These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3874654)

  • 1. Localization of the parallel elastic components in frog skinned muscle fibers studied by the dissociation of the A- and I-bands.
    Higuchi H; Umazume Y
    Biophys J; 1985 Jul; 48(1):137-47. PubMed ID: 3874654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice shrinkage with increasing resting tension in stretched, single skinned fibers of frog muscle.
    Higuchi H; Umazume Y
    Biophys J; 1986 Sep; 50(3):385-9. PubMed ID: 3489489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and functional characterization of the endosarcomeric elastic filament.
    Salviati G; Betto R; Ceoldo S; Pierobon-Bormioli S
    Am J Physiol; 1990 Jul; 259(1 Pt 1):C144-9. PubMed ID: 2164780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments.
    Higuchi H; Yoshioka T; Maruyama K
    J Muscle Res Cell Motil; 1988 Dec; 9(6):491-8. PubMed ID: 3264837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle.
    Higuchi H
    Biophys J; 1987 Jul; 52(1):29-32. PubMed ID: 3496923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive force generation and titin isoforms in mammalian skeletal muscle.
    Horowits R
    Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling of skinned muscle fibers of the frog. Experimental observations.
    Godt RE; Maughan DW
    Biophys J; 1977 Aug; 19(2):103-16. PubMed ID: 18220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disassembly kinetics of thick filaments in rabbit skeletal muscle fibers. Effects of ionic strength, Ca2+ concentration, pH, temperature, and cross-bridges on the stability of thick filament structure.
    Higuchi H; Ishiwata S
    Biophys J; 1985 Mar; 47(3):267-75. PubMed ID: 2983792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dependence of the short-range elasticity on sarcomere length in resting isolated frog muscle fibres.
    Haugen P; Sten-Knudsen O
    Acta Physiol Scand; 1981 Jun; 112(2):113-20. PubMed ID: 6976066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and elasticity of connectin (titin) filaments in skinned frog muscle fibres subjected to partial depolymerization of thick filaments.
    Higuchi H; Suzuki T; Kimura S; Yoshioka T; Maruyama K; Umazume Y
    J Muscle Res Cell Motil; 1992 Jun; 13(3):285-94. PubMed ID: 1527215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of changing free Ca2+ on light diffraction intensity and correlation with tension development in skinned fibers of frog skeletal muscle.
    Oba T; Hotta K
    Pflugers Arch; 1983 May; 397(3):243-7. PubMed ID: 6603609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative analysis of elastic, entropic, electrostatic, and osmotic forces within relaxed skinned muscle fibers.
    Maughan DW; Godt RE
    Biophys Struct Mech; 1980; 7(1):17-40. PubMed ID: 6971660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myofibrils bear most of the resting tension in frog skeletal muscle.
    Magid A; Law DJ
    Science; 1985 Dec; 230(4731):1280-2. PubMed ID: 4071053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic properties of relaxed, activated, and rigor muscle fibers measured with microsecond resolution.
    Jung DW; Blangé T; de Graaf H; Treijtel BW
    Biophys J; 1988 Nov; 54(5):897-908. PubMed ID: 3266558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method.
    Magid A; Reedy MK
    Biophys J; 1980 Apr; 30(1):27-40. PubMed ID: 6973364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A-band shortening in single fibers of frog skeletal muscle.
    Periasamy A; Burns DH; Holdren DN; Pollack GH; Trombitás K
    Biophys J; 1990 Apr; 57(4):815-28. PubMed ID: 2344466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between light diffraction intensity and tension development in frog skeletal muscle.
    Oba T; Hotta K
    Experientia; 1983 Jan; 39(1):58-9. PubMed ID: 6600686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of connectin in the length-tension relation of skeletal and cardiac muscles.
    Matsubara S; Maruyama K
    Jpn J Physiol; 1977; 27(5):589-600. PubMed ID: 304933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.