These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38746707)

  • 21. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury.
    Wang C; Wang M; Xia K; Wang J; Cheng F; Shi K; Ying L; Yu C; Xu H; Xiao S; Liang C; Li F; Lei B; Chen Q
    Bioact Mater; 2021 Aug; 6(8):2523-2534. PubMed ID: 33615043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury.
    Zhang C; Li D; Hu H; Wang Z; An J; Gao Z; Zhang K; Mei X; Wu C; Tian H
    J Nanobiotechnology; 2021 Nov; 19(1):373. PubMed ID: 34789266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled extracellular vesicles release from aminoguanidine nanoparticle-loaded polylysine hydrogel for synergistic treatment of spinal cord injury.
    Wang S; Wang R; Chen J; Yang B; Shu J; Cheng F; Tao Y; Shi K; Wang C; Wang J; Xia K; Zhang Y; Chen Q; Liang C; Tang J; Li F
    J Control Release; 2023 Nov; 363():27-42. PubMed ID: 37722419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment.
    Liu Z; Guo S; Dong L; Wu P; Li K; Li X; Li X; Qian H; Fu Q
    Mater Today Bio; 2022 Dec; 16():100425. PubMed ID: 36186847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a decellularized spinal cord matrix/GelMA composite scaffold and its effects on neuronal differentiation of neural stem cells.
    He W; Wang H; Zhang X; Mao T; Lu Y; Gu Y; Ju D; Qi L; Wang Q; Dong C
    J Biomater Sci Polym Ed; 2022 Nov; 33(16):2124-2144. PubMed ID: 35835455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold with incorporated neurotrophin-3 for spinal cord injury repair.
    Sha Q; Wang Y; Zhu Z; Wang H; Qiu H; Niu W; Li X; Qian J
    Acta Biomater; 2023 Sep; 167():219-233. PubMed ID: 37257575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Curcumin-Primed Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles Improve Motor Functional Recovery of Mice with Complete Spinal Cord Injury by Reducing Inflammation and Enhancing Axonal Regeneration.
    Xiong W; Tian H; Li Z; Peng Z; Wang Y
    Neurochem Res; 2023 May; 48(5):1334-1346. PubMed ID: 36449198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facilitate Angiogenesis and Neurogenesis by Growth Factors Integrated Decellularized Matrix Hydrogel.
    Li R; Xu J; Rao Z; Deng R; Xu Y; Qiu S; Long H; Zhu Q; Liu X; Bai Y; Quan D
    Tissue Eng Part A; 2021 Jun; 27(11-12):771-787. PubMed ID: 33107410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury
    He W; Zhang X; Li X; Ju D; Mao T; Lu Y; Gu Y; Qi L; Wang Q; Wu Q; Dong C
    J Mater Chem B; 2022 Aug; 10(30):5753-5764. PubMed ID: 35838078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ delivery of a curcumin-loaded dynamic hydrogel for the treatment of chronic peripheral neuropathy.
    Kong Y; Shi W; Zheng L; Zhang D; Jiang X; Liu B; Xue W; Kuss M; Li Y; Sorgen PL; Duan B
    J Control Release; 2023 May; 357():319-332. PubMed ID: 37028453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury.
    He Z; Zang H; Zhu L; Huang K; Yi T; Zhang S; Cheng S
    Int J Nanomedicine; 2019; 14():721-732. PubMed ID: 30705588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair.
    Li X; Fan C; Xiao Z; Zhao Y; Zhang H; Sun J; Zhuang Y; Wu X; Shi J; Chen Y; Dai J
    Biomaterials; 2018 Nov; 183():114-127. PubMed ID: 30153562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection.
    Wang JM; Zeng YS; Wu JL; Li Y; Teng YD
    Biomaterials; 2011 Oct; 32(30):7454-68. PubMed ID: 21783247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supramolecular Hydrogel Microspheres of Platelet-Derived Growth Factor Mimetic Peptide Promote Recovery from Spinal Cord Injury.
    Wu W; Jia S; Xu H; Gao Z; Wang Z; Lu B; Ai Y; Liu Y; Liu R; Yang T; Luo R; Hu C; Kong L; Huang D; Yan L; Yang Z; Zhu L; Hao D
    ACS Nano; 2023 Feb; 17(4):3818-3837. PubMed ID: 36787636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
    Song S; Li Y; Huang J; Cheng S; Zhang Z
    Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architecture-Engineered Electrospinning Cascade Regulates Spinal Microenvironment to Promote Nerve Regeneration.
    Tang Y; Xu Z; Tang J; Xu Y; Li Z; Wang W; Wu L; Xi K; Gu Y; Chen L
    Adv Healthc Mater; 2023 May; 12(12):e2202658. PubMed ID: 36652529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ROS-Scavenging Hydrogels Synergize with Neural Stem Cells to Enhance Spinal Cord Injury Repair via Regulating Microenvironment and Facilitating Nerve Regeneration.
    Liu D; Lu G; Shi B; Ni H; Wang J; Qiu Y; Yang L; Zhu Z; Yi X; Du X; Shi B
    Adv Healthc Mater; 2023 Jul; 12(18):e2300123. PubMed ID: 36989238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The aOECs Facilitate the Neuronal Differentiation of Neural Stem Cells in the Inflammatory Microenvironment Through Up-Regulation of Bioactive Factors and Activation of Wnt3/β-Catenin Pathway.
    He Y; Jiang Y; Dong L; Jiang C; Zhang L; Zhang G; Yang H; Liu J
    Mol Neurobiol; 2023 Feb; 60(2):789-806. PubMed ID: 36371572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effects of curcumin on the recovery of hind limb function after spinal cord injury in rats and its mechamism].
    Hao Q; Wang HW; Yu Q; Shen J; Zhao L; Shi FF; Chen MM; Yang YL
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2017 May; 33(5):441-444. PubMed ID: 29926590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.