BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38747299)

  • 1. Protein-Labeling Reagents Selectively Activated by Copper(I).
    Cheng R; Nishikawa Y; Wagatsuma T; Kambe T; Tanaka YK; Ogra Y; Tamura T; Hamachi I
    ACS Chem Biol; 2024 Jun; 19(6):1222-1228. PubMed ID: 38747299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools.
    Pezacki AT; Matier CD; Gu X; Kummelstedt E; Bond SE; Torrente L; Jordan-Sciutto KL; DeNicola GM; Su TA; Brady DC; Chang CJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2202736119. PubMed ID: 36252013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism.
    Chung CY; Posimo JM; Lee S; Tsang T; Davis JM; Brady DC; Chang CJ
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18285-18294. PubMed ID: 31451653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation.
    Rigo A; Corazza A; di Paolo ML; Rossetto M; Ugolini R; Scarpa M
    J Inorg Biochem; 2004 Sep; 98(9):1495-501. PubMed ID: 15337601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper-albumin complexes from antioxidants to prooxidants.
    Gryzunov YA; Arroyo A; Vigne JL; Zhao Q; Tyurin VA; Hubel CA; Gandley RE; Vladimirov YA; Taylor RN; Kagan VE
    Arch Biochem Biophys; 2003 May; 413(1):53-66. PubMed ID: 12706341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper: toxicological relevance and mechanisms.
    Gaetke LM; Chow-Johnson HS; Chow CK
    Arch Toxicol; 2014 Nov; 88(11):1929-38. PubMed ID: 25199685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu
    Rakshit A; Khatua K; Shanbhag V; Comba P; Datta A
    Chem Sci; 2018 Nov; 9(41):7916-7930. PubMed ID: 30450181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cancer cell-specific fluorescent probe for imaging Cu
    Wang C; Dong B; Kong X; Song X; Zhang N; Lin W
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jul; 182():32-36. PubMed ID: 28390250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I).
    Brose J; La Fontaine S; Wedd AG; Xiao Z
    Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox activity and multiple copper(I) coordination of 2His-2Cys oligopeptide.
    Choi D; Alshahrani AA; Vytla Y; Deeconda M; Serna VJ; Saenz RF; Angel LA
    J Mass Spectrom; 2015 Feb; 50(2):316-25. PubMed ID: 25800013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metal oxidation state on FRET: a Cu(I) silent but selectively Cu(II) responsive fluorescent reporter and its bioimaging applications.
    Pal S; Sen B; Lohar S; Mukherjee M; Banerjee S; Chattopadhyay P
    Dalton Trans; 2015 Jan; 44(4):1761-8. PubMed ID: 25469486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper ion / H
    Tiwari MK; Hägglund PM; Møller IM; Davies MJ; Bjerrum MJ
    Redox Biol; 2019 Sep; 26():101262. PubMed ID: 31284117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.
    Postnikova GB; Shekhovtsova EA
    Biochemistry (Mosc); 2016 Dec; 81(13):1735-1753. PubMed ID: 28260494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple.
    Zhou P; Zhang J; Liang J; Zhang Y; Liu Y; Liu B
    Water Sci Technol; 2016; 73(3):493-500. PubMed ID: 26877030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Aliphatic Phosphines by Auxiliary Phosphine Sulfides Offers Zeptomolar Affinity and Unprecedented Selectivity for Probing Biological Cu
    Morgan MT; Yang B; Harankhedkar S; Nabatilan A; Bourassa D; McCallum AM; Sun F; Wu R; Forest CR; Fahrni CJ
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9711-9715. PubMed ID: 29885022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conditional proteomics approach to identify proteins involved in zinc homeostasis.
    Miki T; Awa M; Nishikawa Y; Kiyonaka S; Wakabayashi M; Ishihama Y; Hamachi I
    Nat Methods; 2016 Nov; 13(11):931-937. PubMed ID: 27617391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective and sensitive fluorescent probe for Cu
    Liu C; Jiao X; He S; Zhao L; Zeng X
    Org Biomol Chem; 2017 May; 15(18):3947-3954. PubMed ID: 28436528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance.
    Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F
    Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenoxazine-based Near-infrared Fluorescent Probes for the Specific Detection of Copper (II) Ions in Living Cells.
    Shen Y; Zheng W; Yao Y; Wang D; Lv G; Li C
    Chem Asian J; 2020 Sep; 15(18):2864-2867. PubMed ID: 32720435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific copper-catalyzed oxidation of α-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson's disease.
    Miotto MC; Rodriguez EE; Valiente-Gabioud AA; Torres-Monserrat V; Binolfi A; Quintanar L; Zweckstetter M; Griesinger C; Fernández CO
    Inorg Chem; 2014 May; 53(9):4350-8. PubMed ID: 24725094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.