BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38747380)

  • 21. Finding the generalized molecular principles of protein thermal stability.
    Hait S; Mallik S; Basu S; Kundu S
    Proteins; 2020 Jun; 88(6):788-808. PubMed ID: 31872464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular evolution steered structural adaptations in the DNA polymerase III α subunit of halophilic bacterium Salinibacter ruber.
    Sengupta A; Das K; Jha N; Akhter Y; Kumar A
    Extremophiles; 2023 Jul; 27(2):20. PubMed ID: 37481762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui.
    Müller-Santos M; de Souza EM; Pedrosa Fde O; Mitchell DA; Longhi S; Carrière F; Canaan S; Krieger N
    Biochim Biophys Acta; 2009 Aug; 1791(8):719-29. PubMed ID: 19303051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation.
    Winter JA; Christofi P; Morroll S; Bunting KA
    BMC Struct Biol; 2009 Aug; 9():55. PubMed ID: 19698123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Haloadaptation: insights from comparative modeling studies of halophilic archaeal DHFRs.
    Kastritis PL; Papandreou NC; Hamodrakas SJ
    Int J Biol Macromol; 2007 Oct; 41(4):447-53. PubMed ID: 17675150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salt tolerance of archaeal extremely halophilic lipid membranes.
    Tenchov B; Vescio EM; Sprott GD; Zeidel ML; Mathai JC
    J Biol Chem; 2006 Apr; 281(15):10016-23. PubMed ID: 16484230
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Novel Carboxylesterase Derived from a Compost Metagenome Exhibiting High Stability and Activity towards High Salinity.
    Lu M; Daniel R
    Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33478024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of charged residue substitutions on the thermodynamics of protein-surface interactions.
    Ortega G; Aguilar MA; Gautam BK; Plaxco KW
    Protein Sci; 2021 Dec; 30(12):2408-2417. PubMed ID: 34719069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osmolytes Can Destabilize Proteins in Cells by Modulating Electrostatics and Quinary Interactions.
    Song X; An L; Wang M; Chen J; Liu Z; Yao L
    ACS Chem Biol; 2021 May; 16(5):864-871. PubMed ID: 33843182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts.
    Madern D; Pfister C; Zaccai G
    Eur J Biochem; 1995 Jun; 230(3):1088-95. PubMed ID: 7601139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defining the role of salt bridges in protein stability.
    Jelesarov I; Karshikoff A
    Methods Mol Biol; 2009; 490():227-60. PubMed ID: 19157086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and solvation.
    Guest WC; Cashman NR; Plotkin SS
    Biochem Cell Biol; 2010 Apr; 88(2):371-81. PubMed ID: 20453937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis.
    Laksmi FA; Imamura H; Tsurumaru H; Nakamura Y; Hanagata H; Arai S; Tokunaga M; Ishibashi M
    Protein J; 2020 Feb; 39(1):46-53. PubMed ID: 31734848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive modifications in membranes of halotolerant and halophilic microorganisms.
    Russell NJ
    J Bioenerg Biomembr; 1989 Feb; 21(1):93-113. PubMed ID: 2651429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary divergence and salinity-mediated selection in halophilic archaea.
    Dennis PP; Shimmin LC
    Microbiol Mol Biol Rev; 1997 Mar; 61(1):90-104. PubMed ID: 9106366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical balance of electrostatic and hydrophobic interactions is required for beta 2-microglobulin amyloid fibril growth and stability.
    Raman B; Chatani E; Kihara M; Ban T; Sakai M; Hasegawa K; Naiki H; Rao ChM; Goto Y
    Biochemistry; 2005 Feb; 44(4):1288-99. PubMed ID: 15667222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.