These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38747380)

  • 41. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI
    Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prevalence and mechanism of synergistic carboxylate-cation-water interactions in halophilic proteins.
    Geraili Daronkola H; Vila Verde A
    Biophys J; 2023 Jun; 122(12):2577-2589. PubMed ID: 37179455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interplay of Electrostatics and Hydrophobic Effects in the Metamorphic Protein Human Lymphotactin.
    Korkmaz EN; Volkman BF; Cui Q
    J Phys Chem B; 2015 Jul; 119(30):9547-58. PubMed ID: 26134347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A two-alpha-helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea.
    Marg BL; Schweimer K; Sticht H; Oesterhelt D
    Biochemistry; 2005 Jan; 44(1):29-39. PubMed ID: 15628843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.
    Robinson AC; Castañeda CA; Schlessman JL; García-Moreno EB
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11685-90. PubMed ID: 25074910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability.
    Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM
    Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonspecific shielding of unfavorable electrostatic intramolecular interactions in the erythropoietin native-state increase conformational stability and limit non-native aggregation.
    Banks DD
    Protein Sci; 2015 May; 24(5):803-11. PubMed ID: 25628168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations.
    Xu D; Lin SL; Nussinov R
    J Mol Biol; 1997 Jan; 265(1):68-84. PubMed ID: 8995525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial life at high salt concentrations: phylogenetic and metabolic diversity.
    Oren A
    Saline Syst; 2008 Apr; 4():2. PubMed ID: 18412960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of protein stability and aggregation properties by surface charge engineering.
    Raghunathan G; Sokalingam S; Soundrarajan N; Madan B; Munussami G; Lee SG
    Mol Biosyst; 2013 Sep; 9(9):2379-89. PubMed ID: 23861008
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein hypersaline adaptation: insight from amino acids with machine learning algorithms.
    Zhang G; Ge H
    Protein J; 2013 Apr; 32(4):239-45. PubMed ID: 23592219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.
    Tsai MY; Zheng W; Balamurugan D; Schafer NP; Kim BL; Cheung MS; Wolynes PG
    Protein Sci; 2016 Jan; 25(1):255-69. PubMed ID: 26183799
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges.
    Panja AS; Maiti S; Bandyopadhyay B
    Sci Rep; 2020 Feb; 10(1):1822. PubMed ID: 32020026
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Link between protein-solvent and weak protein-protein interactions gives insight into halophilic adaptation.
    Costenaro L; Zaccai G; Ebel C
    Biochemistry; 2002 Nov; 41(44):13245-52. PubMed ID: 12403626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights into the sequence parameters for halophilic adaptation.
    Nath A
    Amino Acids; 2016 Mar; 48(3):751-762. PubMed ID: 26520112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrostatic contributions to the stability of the GCN4 leucine zipper structure.
    Matousek WM; Ciani B; Fitch CA; Garcia-Moreno B; Kammerer RA; Alexandrescu AT
    J Mol Biol; 2007 Nov; 374(1):206-19. PubMed ID: 17920624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein stability and molecular adaptation to extreme conditions.
    Jaenicke R
    Eur J Biochem; 1991 Dec; 202(3):715-28. PubMed ID: 1765088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.