These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 38747602)

  • 41. Conspicuous Smooth and White Egg-Shaped Sulfur Structures on a Deep-Sea Hydrothermal Vent Formed by Sulfide-Oxidizing Bacteria.
    van Erk MR; Krukenberg V; Bomholt Jensen P; Littmann S; de Beer D
    Microbiol Spectr; 2021 Oct; 9(2):e0095521. PubMed ID: 34468192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen is an energy source for hydrothermal vent symbioses.
    Petersen JM; Zielinski FU; Pape T; Seifert R; Moraru C; Amann R; Hourdez S; Girguis PR; Wankel SD; Barbe V; Pelletier E; Fink D; Borowski C; Bach W; Dubilier N
    Nature; 2011 Aug; 476(7359):176-80. PubMed ID: 21833083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for horizontal transmission from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts.
    Fontanez KM; Cavanaugh CM
    Environ Microbiol; 2014 Dec; 16(12):3608-21. PubMed ID: 24428587
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic].
    Xu H; Jiang L; Li S; Zhong T; Lai Q; Shao Z
    Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):88-100. PubMed ID: 27305783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis.
    Dmytrenko O; Russell SL; Loo WT; Fontanez KM; Liao L; Roeselers G; Sharma R; Stewart FJ; Newton IL; Woyke T; Wu D; Lang JM; Eisen JA; Cavanaugh CM
    BMC Genomics; 2014 Oct; 15():924. PubMed ID: 25342549
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)--model systems for studies of symbiont-host adaptation.
    Stewart FJ; Cavanaugh CM
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):343-60. PubMed ID: 17028934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments.
    Dombrowski N; Seitz KW; Teske AP; Baker BJ
    Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Endosymbiont genomes yield clues of tubeworm success.
    Li Y; Liles MR; Halanych KM
    ISME J; 2018 Nov; 12(11):2785-2795. PubMed ID: 30022157
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methanotrophic symbioses in marine invertebrates.
    Petersen JM; Dubilier N
    Environ Microbiol Rep; 2009 Oct; 1(5):319-35. PubMed ID: 23765884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the population of the sulfur-oxidizing symbiont of Codakia orbicularis (Bivalvia, Lucinidae) by single-cell analyses.
    Caro A; Gros O; Got P; De Wit R; Troussellier M
    Appl Environ Microbiol; 2007 Apr; 73(7):2101-9. PubMed ID: 17259363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi.
    Li Y; Tassia MG; Waits DS; Bogantes VE; David KT; Halanych KM
    BMC Biol; 2019 Nov; 17(1):91. PubMed ID: 31739792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas.
    Musat N; Giere O; Gieseke A; Thiermann F; Amann R; Dubilier N
    Environ Microbiol; 2007 May; 9(5):1345-53. PubMed ID: 17472647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system.
    Meyer B; Imhoff JF; Kuever J
    Environ Microbiol; 2007 Dec; 9(12):2957-77. PubMed ID: 17991026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae).
    Fukumori K; Oguchi K; Ikeda H; Shinohara T; Tanahashi M; Moriyama M; Koga R; Fukatsu T
    mBio; 2022 Feb; 13(1):e0369121. PubMed ID: 35073753
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis.
    Ponnudurai R; Kleiner M; Sayavedra L; Petersen JM; Moche M; Otto A; Becher D; Takeuchi T; Satoh N; Dubilier N; Schweder T; Markert S
    ISME J; 2017 Feb; 11(2):463-477. PubMed ID: 27801908
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria.
    Petersen JM; Yuen B
    Appl Environ Microbiol; 2021 Mar; 87(5):. PubMed ID: 33355107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes.
    Ankrah NYD; Chouaia B; Douglas AE
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254121
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences.
    Distel DL; Lane DJ; Olsen GJ; Giovannoni SJ; Pace B; Pace NR; Stahl DA; Felbeck H
    J Bacteriol; 1988 Jun; 170(6):2506-10. PubMed ID: 3286609
    [TBL] [Abstract][Full Text] [Related]  

  • 59. "
    Jiang L; Liu X; Dong C; Huang Z; Cambon-Bonavita MA; Alain K; Gu L; Wang S; Shao Z
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32060020
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virus diversity and interactions with hosts in deep-sea hydrothermal vents.
    Cheng R; Li X; Jiang L; Gong L; Geslin C; Shao Z
    Microbiome; 2022 Dec; 10(1):235. PubMed ID: 36566239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.