BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38748013)

  • 1. Deep learning path-like collective variable for enhanced sampling molecular dynamics.
    Fröhlking T; Bonati L; Rizzi V; Gervasio FL
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and enhanced sampling of molecular systems with smooth and nonlinear data-driven collective variables.
    Hashemian B; Millán D; Arroyo M
    J Chem Phys; 2013 Dec; 139(21):214101. PubMed ID: 24320358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design.
    Chen W; Tan AR; Ferguson AL
    J Chem Phys; 2018 Aug; 149(7):072312. PubMed ID: 30134681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering.
    Gil-Ley A; Bussi G
    J Chem Theory Comput; 2015 Mar; 11(3):1077-85. PubMed ID: 25838811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Boosted Molecular Dynamics: Accelerating Molecular Simulations with Gaussian Boost Potentials Generated Using Probabilistic Bayesian Deep Neural Network.
    Do HN; Miao Y
    J Phys Chem Lett; 2023 Jun; 14(21):4970-4982. PubMed ID: 37219922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferable Neural Networks for Enhanced Sampling of Protein Dynamics.
    Sultan MM; Wayment-Steele HK; Pande VS
    J Chem Theory Comput; 2018 Apr; 14(4):1887-1894. PubMed ID: 29529369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling.
    Rydzewski J; Valsson O
    J Phys Chem A; 2021 Jul; 125(28):6286-6302. PubMed ID: 34213915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration.
    Chen W; Ferguson AL
    J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions.
    Pérez de Alba Ortíz A; Vreede J; Ensing B
    Methods Mol Biol; 2019; 2022():255-290. PubMed ID: 31396907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced sampling in explicit solvent by deep learning module in FSATOOL.
    Wu M; Liao J; Shu Z; Chen C
    J Comput Chem; 2023 Aug; 44(22):1845-1856. PubMed ID: 37191088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering Collective Variables of Molecular Transitions via Genetic Algorithms and Neural Networks.
    Hooft F; Pérez de Alba Ortíz A; Ensing B
    J Chem Theory Comput; 2021 Apr; 17(4):2294-2306. PubMed ID: 33662202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TAPS: A traveling-salesman based automated path searching method for functional conformational changes of biological macromolecules.
    Zhu L; Sheong FK; Cao S; Liu S; Unarta IC; Huang X
    J Chem Phys; 2019 Mar; 150(12):124105. PubMed ID: 30927873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning collective variables from transition path ensemble.
    Ray D; Trizio E; Parrinello M
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORE-MD, a path correlated molecular dynamics simulation method.
    Peter EK; Shea JE; Schug A
    J Chem Phys; 2020 Aug; 153(8):084114. PubMed ID: 32872878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian Accelerated Molecular Dynamics in OpenMM.
    Copeland MM; Do HN; Votapka L; Joshi K; Wang J; Amaro RE; Miao Y
    J Phys Chem B; 2022 Aug; 126(31):5810-5820. PubMed ID: 35895977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics from Replica Exchange Molecular Dynamics Simulations.
    Stelzl LS; Hummer G
    J Chem Theory Comput; 2017 Aug; 13(8):3927-3935. PubMed ID: 28657736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LINES: Log-Probability Estimation via Invertible Neural Networks for Enhanced Sampling.
    Odstrcil RE; Dutta P; Liu J
    J Chem Theory Comput; 2022 Oct; 18(10):6297-6309. PubMed ID: 36099438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Sampling Minimum Energy Path.
    Ramil M; Boudier C; Goryaeva AM; Marinica MC; Maillet JB
    J Chem Theory Comput; 2022 Oct; 18(10):5864-5875. PubMed ID: 36073162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.
    Zheng L; Chen M; Yang W
    J Chem Phys; 2009 Jun; 130(23):234105. PubMed ID: 19548709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From A to B in free energy space.
    Branduardi D; Gervasio FL; Parrinello M
    J Chem Phys; 2007 Feb; 126(5):054103. PubMed ID: 17302470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.