These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38748114)

  • 1. Optimizing focus: switchable modes and sub-diffraction spots in inverse circular Airy beams.
    Chen L; Tao C; Wang LG
    Opt Lett; 2024 May; 49(10):2597-2600. PubMed ID: 38748114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution and particle trapping dynamics of circular Pearcey-Airy Gaussian vortex beams in tightly focused systems.
    Wei S; Tu J; Lu Z; Wang X; Li Z; Wang G; Deng D
    Opt Express; 2023 Aug; 31(17):27843-27857. PubMed ID: 37710851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams.
    Singh BK; Nagar H; Roichman Y; Arie A
    Light Sci Appl; 2017 Sep; 6(9):e17050. PubMed ID: 30167295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creation of Sub-diffraction Longitudinally Polarized Spot by Focusing Radially Polarized Light with Binary Phase Lens.
    Yu AP; Chen G; Zhang ZH; Wen ZQ; Dai LR; Zhang K; Jiang SL; Wu ZX; Li YY; Wang CT; Luo XG
    Sci Rep; 2016 Dec; 6():38859. PubMed ID: 27941852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focal shift of an axisymmetric Bessel-Gaussian beam under Airy mixing modulation.
    Ding S; Li Y; Li Z; Wang G; Xu J; Li Y; Dong X; Gao X
    Appl Opt; 2020 Apr; 59(12):3673-3681. PubMed ID: 32400489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.
    Yuan G; Rogers ET; Roy T; Adamo G; Shen Z; Zheludev NI
    Sci Rep; 2014 Sep; 4():6333. PubMed ID: 25208611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight focusing properties and focal field tailoring of cylindrical vector beams generated from a linearly polarized coherent beam array.
    Zhang Y; Hou T; Chang H; Yu T; Chang Q; Jiang M; Ma P; Su R; Zhou P
    Opt Express; 2021 Feb; 29(4):5259-5269. PubMed ID: 33726065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of focusing property and radiation force between autofocusing Bessel beams and focused Gaussian beams.
    Ding Z; Gao Y; Hou C; Li S; Yu Y
    Opt Express; 2024 Mar; 32(6):9982-9994. PubMed ID: 38571221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental observation and analysis of all-fiber plasmonic double Airy beams.
    Guan C; Ding M; Shi J; Hua P; Wang P; Yuan L; Brambilla G
    Opt Express; 2014 Jul; 22(15):18365-71. PubMed ID: 25089455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tightly focusing metalens based on the high order Bessel function.
    Guo Z; Wu X; Zhou L; Li Y; Wei B; Wen D; Li P; Zhao J; Liu S
    Opt Lett; 2024 May; 49(10):2573-2576. PubMed ID: 38748108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airy transform of Laguerre-Gaussian beams.
    Zhou G; Wang F; Feng S
    Opt Express; 2020 Jun; 28(13):19683-19699. PubMed ID: 32672240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shaping autofocusing Airy beams through the modification of Fourier spectrum.
    Xu D; Liu Y; Mo Z; Jiang J; Shi J; Liang Z; Wu Y; Zhao J; Yang H; Huang H; Liu H; Shui L; Deng D
    Opt Express; 2022 Jan; 30(1):232-242. PubMed ID: 35201202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam.
    Yan W; Nie Z; Zhang X; Wang Y; Song Y
    Appl Opt; 2017 Mar; 56(7):1940-1946. PubMed ID: 28248393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation.
    Chen G; Li Y; Yu A; Wen Z; Dai L; Chen L; Zhang Z; Jiang S; Zhang K; Wang X; Lin F
    Sci Rep; 2016 Jun; 6():29068. PubMed ID: 27353239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Needle of longitudinally polarized light using the circular Airy beam.
    An Z; Lu W
    Opt Lett; 2024 Feb; 49(3):642-645. PubMed ID: 38300079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of aplanatic and real lens focused spots in the framework of the local plane interface approximation.
    Shi R; Wyrowski F
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1801-1809. PubMed ID: 31674447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation of Integrated Generation and Shaping of Airy and Bessel Vortex Beams Based on All-Dielectric Metasurface.
    Guo K; Liu Y; Wei Z; Liu H
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating multiple ultra-long longitudinal magnetization textures by strongly focusing azimuthally polarized circular Airy vortex beams.
    Nie Z; Ning Z; Liu X; Zhang Y; Wang H; Cao E; Yan W
    Opt Express; 2023 Jun; 31(12):19089-19101. PubMed ID: 37381333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abruptly autofocusing circular swallowtail beams.
    Teng H; Qian Y; Lan Y; Cai Y
    Opt Lett; 2021 Jan; 46(2):270-273. PubMed ID: 33449005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.