These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38748121)

  • 1. High-fidelity single logical qubit encoding scheme assisted by single-sided quantum dot-cavity systems.
    Xiu XM; Wang XY; Liu ST; Lv L; Zhao ZL; Yuan ZQ; Yang ZL; Ji YQ; Dong L
    Opt Lett; 2024 May; 49(10):2625-2628. PubMed ID: 38748121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states.
    Heo J; Hong C; Kang MS; Yang HJ
    Sci Rep; 2020 Sep; 10(1):15334. PubMed ID: 32948781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem.
    Dong L; Wang JX; Li QY; Shen HZ; Dong HK; Xiu XM; Gao YJ
    Opt Lett; 2016 Mar; 41(5):1030-3. PubMed ID: 26974108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Opt Express; 2008 Oct; 16(22):18067-81. PubMed ID: 18958086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.
    Kocaman S; Sayan GT
    Opt Express; 2016 Dec; 24(25):29329-29341. PubMed ID: 27958593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity.
    Hong CH; Heo J; Kang MS; Jang J; Yang HJ
    Sci Rep; 2018 Feb; 8(1):2566. PubMed ID: 29416070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot.
    Heo J; Hong C; Choi SG; Hong JP
    Sci Rep; 2019 Jul; 9(1):10151. PubMed ID: 31300664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third emission mechanism in solid-state nanocavity quantum electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Rep Prog Phys; 2012 Sep; 75(9):096401. PubMed ID: 22885777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage.
    Kang MS; Heo J; Choi SG; Moon S; Han SW
    Sci Rep; 2020 Mar; 10(1):5123. PubMed ID: 32198445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloaking a qubit in a cavity.
    Lledó C; Dassonneville R; Moulinas A; Cohen J; Shillito R; Bienfait A; Huard B; Blais A
    Nat Commun; 2023 Oct; 14(1):6313. PubMed ID: 37813905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate.
    Cao C; Zhang L; Han YH; Yin PP; Fan L; Duan YW; Zhang R
    Opt Express; 2020 Feb; 28(3):2857-2872. PubMed ID: 32121965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots.
    Heo J; Won K; Yang HJ; Hong JP; Choi SG
    Sci Rep; 2019 Aug; 9(1):12440. PubMed ID: 31455794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states.
    Heo J; Choi SG
    Sci Rep; 2021 May; 11(1):10423. PubMed ID: 34001956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED.
    Yang CP
    J Phys Condens Matter; 2011 Jun; 23(22):225702. PubMed ID: 21593555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manifestation of the Purcell Effect in Current Transport through a Dot-Cavity-QED System.
    Abdullah NR; Tang CS; Manolescu A; Gudmundsson V
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31319544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Logical measurement-based quantum computation in circuit-QED.
    Joo J; Lee CW; Kono S; Kim J
    Sci Rep; 2019 Nov; 9(1):16592. PubMed ID: 31719588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.