These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38748191)
1. ATPSpin: A Single Microfluidic Platform that Produces Diversified ATPS-Alginate Microfibers. Ghasemzaie N; Jeyhani M; Joshi K; Lee WL; Tsai SSH ACS Biomater Sci Eng; 2024 Jun; 10(6):3896-3908. PubMed ID: 38748191 [TBL] [Abstract][Full Text] [Related]
2. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Lee KH; Shin SJ; Park Y; Lee SH Small; 2009 Jun; 5(11):1264-8. PubMed ID: 19296560 [No Abstract] [Full Text] [Related]
4. Design of capillary microfluidics for spinning cell-laden microfibers. Yu Y; Shang L; Guo J; Wang J; Zhao Y Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174 [TBL] [Abstract][Full Text] [Related]
5. Dual Crosslinked Methacrylated Alginate Hydrogel Micron Fibers and Tissue Constructs for Cell Biology. Gao Y; Jin X Mar Drugs; 2019 Sep; 17(10):. PubMed ID: 31569386 [TBL] [Abstract][Full Text] [Related]
6. One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System. Wang H; Liu H; Zhang X; Wang Y; Zhao M; Chen W; Qin J ACS Appl Mater Interfaces; 2021 Jan; 13(2):3199-3208. PubMed ID: 33405509 [TBL] [Abstract][Full Text] [Related]
7. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. Tian L; Ma J; Li W; Zhang X; Gao X Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751 [TBL] [Abstract][Full Text] [Related]
8. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques. Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic generation of hollow Ca-alginate microfibers. Meng ZJ; Wang W; Xie R; Ju XJ; Liu Z; Chu LY Lab Chip; 2016 Jul; 16(14):2673-81. PubMed ID: 27302737 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Daniele MA; Boyd DA; Adams AA; Ligler FS Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649 [TBL] [Abstract][Full Text] [Related]
11. Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning. Zhou T; NajafiKhoshnoo S; Esfandyarpour R; Kulinsky L Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838018 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274 [TBL] [Abstract][Full Text] [Related]
14. "On the fly" continuous generation of alginate fibers using a microfluidic device. Shin SJ; Park JY; Lee JY; Park H; Park YD; Lee KB; Whang CM; Lee SH Langmuir; 2007 Aug; 23(17):9104-8. PubMed ID: 17637008 [TBL] [Abstract][Full Text] [Related]
15. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667 [TBL] [Abstract][Full Text] [Related]
16. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning. Li W; Yao K; Tian L; Xue C; Zhang X; Gao X J Tissue Eng Regen Med; 2022 Oct; 16(10):913-922. PubMed ID: 35802061 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Liu M; Zhou Z; Chai Y; Zhang S; Wu X; Huang S; Su J; Jiang J Biofabrication; 2017 Jun; 9(2):025030. PubMed ID: 28485303 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic-Assisted Pneumatic Droplet Generators Designed for Multiscenario Biomanufacturing with Favorable Biocompatibility and Extendibility. Gan Z; Liu H; Qin X; Wang K; Li X; Xie F; Qin J ACS Biomater Sci Eng; 2024 Oct; 10(10):6721-6733. PubMed ID: 39231535 [TBL] [Abstract][Full Text] [Related]
20. Generation of alginate microfibers with a roller-assisted microfluidic system. Su J; Zheng Y; Wu H Lab Chip; 2009 Apr; 9(7):996-1001. PubMed ID: 19294313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]