BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38748665)

  • 1. Combinatorial Metabolic Engineering for Improving Betulinic Acid Biosynthesis in
    Tang M; Xu X; Liu Y; Li J; Du G; Lv X; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1798-1808. PubMed ID: 38748665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnological production of betulinic acid and derivatives and their applications.
    An T; Zha W; Zi J
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3339-3348. PubMed ID: 32112133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Synthesis of Limonene in
    Kong X; Wu Y; Yu W; Liu Y; Li J; Du G; Lv X; Liu L
    J Agric Food Chem; 2023 May; 71(20):7752-7764. PubMed ID: 37189018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways.
    Li J; Zhang Y
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3081-9. PubMed ID: 24389702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation and purification strategies for the production of betulinic acid and its lupane-type precursors in Saccharomyces cerevisiae.
    Czarnotta E; Dianat M; Korf M; Granica F; Merz J; Maury J; Baallal Jacobsen SA; Förster J; Ebert BE; Blank LM
    Biotechnol Bioeng; 2017 Nov; 114(11):2528-2538. PubMed ID: 28688186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Construction of cell factories for production of lupeol in Saccharomyces cerevisiae].
    Lin TT; Wang D; Dai ZB; Zhang XL; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(6):1008-1015. PubMed ID: 28875662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of betulinic acid biosynthesis in yeast employing multiple strategies.
    Zhou C; Li J; Li C; Zhang Y
    BMC Biotechnol; 2016 Aug; 16(1):59. PubMed ID: 27534392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering.
    Jin CC; Zhang JL; Song H; Cao YX
    Microb Cell Fact; 2019 May; 18(1):77. PubMed ID: 31053076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid.
    Huang J; Zha W; An T; Dong H; Huang Y; Wang D; Yu R; Duan L; Zhang X; Peters RJ; Dai Z; Zi J
    Appl Microbiol Biotechnol; 2019 Sep; 103(17):7029-7039. PubMed ID: 31309269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating betulinic acid production in Saccharomyces cerevisiae by managing the intracellular supplies of the co-factor NADPH and oxygen.
    Li J; Zhang Y
    J Biosci Bioeng; 2015 Jan; 119(1):77-81. PubMed ID: 25043336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-modular metabolic engineering and efflux engineering for enhanced lycopene production in recombinant Saccharomyces cerevisiae.
    Huang G; Li J; Lin J; Duan C; Yan G
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38621758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae.
    Duan L; Ding W; Liu X; Cheng X; Cai J; Hua E; Jiang H
    Microb Cell Fact; 2017 Sep; 16(1):165. PubMed ID: 28950867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced β-Amyrin Synthesis in Saccharomyces cerevisiae by Coupling An Optimal Acetyl-CoA Supply Pathway.
    Liu H; Fan J; Wang C; Li C; Zhou X
    J Agric Food Chem; 2019 Apr; 67(13):3723-3732. PubMed ID: 30808164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P; Luo R; Li Y; Chen X
    Microbiol Spectr; 2022 Dec; 10(6):e0227722. PubMed ID: 36354322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Engineering of
    Li T; Liu GS; Zhou W; Jiang M; Ren YH; Tao XY; Liu M; Zhao M; Wang FQ; Gao B; Wei DZ
    J Agric Food Chem; 2020 Feb; 68(7):2132-2138. PubMed ID: 31989819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production.
    Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z
    ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene.
    Bai X; Wang S; Zhang Q; Hu Y; Zhou J; Men L; Li D; Ma J; Wei Q; Xu M; Yin X; Hu T
    J Agric Food Chem; 2024 Apr; 72(15):8704-8714. PubMed ID: 38572931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.