These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 38748852)
1. Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI. Siedler TM; Jakob PM; Herold V Magn Reson Med; 2024 Sep; 92(3):1232-1247. PubMed ID: 38748852 [TBL] [Abstract][Full Text] [Related]
2. A cross-domain complex convolution neural network for undersampled magnetic resonance image reconstruction. Yuan T; Yang J; Chi J; Yu T; Liu F Magn Reson Imaging; 2024 May; 108():86-97. PubMed ID: 38331053 [TBL] [Abstract][Full Text] [Related]
3. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729 [TBL] [Abstract][Full Text] [Related]
4. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction. Eo T; Shin H; Jun Y; Kim T; Hwang D Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061 [TBL] [Abstract][Full Text] [Related]
5. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN). Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668 [TBL] [Abstract][Full Text] [Related]
6. Undersampled MR image reconstruction using an enhanced recursive residual network. Bao L; Ye F; Cai C; Wu J; Zeng K; van Zijl PCM; Chen Z J Magn Reson; 2019 Aug; 305():232-246. PubMed ID: 31323504 [TBL] [Abstract][Full Text] [Related]
7. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction. Oh C; Chung JY; Han Y Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376 [TBL] [Abstract][Full Text] [Related]
8. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain. Yang B; Yuan M; Ma Y; Zhang J; Zhan K BMC Med Imaging; 2015 Aug; 15():28. PubMed ID: 26253135 [TBL] [Abstract][Full Text] [Related]
9. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling. Hosseini SAH; Zhang C; Weingärtner S; Moeller S; Stuber M; Ugurbil K; Akçakaya M PLoS One; 2020; 15(2):e0229418. PubMed ID: 32084235 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Rastogi A; Brugnara G; Foltyn-Dumitru M; Mahmutoglu MA; Preetha CJ; Kobler E; Pflüger I; Schell M; Deike-Hofmann K; Kessler T; van den Bent MJ; Idbaih A; Platten M; Brandes AA; Nabors B; Stupp R; Bernhardt D; Debus J; Abdollahi A; Gorlia T; Tonn JC; Weller M; Maier-Hein KH; Radbruch A; Wick W; Bendszus M; Meredig H; Kurz FT; Vollmuth P Lancet Oncol; 2024 Mar; 25(3):400-410. PubMed ID: 38423052 [TBL] [Abstract][Full Text] [Related]
11. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction. Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983 [TBL] [Abstract][Full Text] [Related]
12. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling. Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952 [TBL] [Abstract][Full Text] [Related]
13. SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction. Hu Y; Gan W; Ying C; Wang T; Eldeniz C; Liu J; Chen Y; An H; Kamilov US Magn Reson Med; 2024 Sep; 92(3):1048-1063. PubMed ID: 38725383 [TBL] [Abstract][Full Text] [Related]
14. Single patient convolutional neural networks for real-time MR reconstruction: coherent low-resolution versus incoherent undersampling. Dietz B; Yun J; Yip E; Gabos Z; Fallone BG; Wachowicz K Phys Med Biol; 2020 Apr; 65(8):08NT03. PubMed ID: 32135531 [TBL] [Abstract][Full Text] [Related]
15. Region-of-interest undersampled MRI reconstruction: A deep convolutional neural network approach. Sun L; Fan Z; Ding X; Huang Y; Paisley J Magn Reson Imaging; 2019 Nov; 63():185-192. PubMed ID: 31352015 [TBL] [Abstract][Full Text] [Related]
16. Accelerating CEST imaging using a model-based deep neural network with synthetic training data. Xu J; Zu T; Hsu YC; Wang X; Chan KWY; Zhang Y Magn Reson Med; 2024 Feb; 91(2):583-599. PubMed ID: 37867413 [TBL] [Abstract][Full Text] [Related]
17. Accelerated MRI reconstructions via variational network and feature domain learning. Giannakopoulos II; Muckley MJ; Kim J; Breen M; Johnson PM; Lui YW; Lattanzi R Sci Rep; 2024 May; 14(1):10991. PubMed ID: 38744904 [TBL] [Abstract][Full Text] [Related]
18. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data. Rastogi A; Dutta A; Yalavarthy PK Med Phys; 2023 Mar; 50(3):1560-1572. PubMed ID: 36354289 [TBL] [Abstract][Full Text] [Related]
19. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping. Liu F; Feng L; Kijowski R Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285 [TBL] [Abstract][Full Text] [Related]
20. Greybox: A hybrid algorithm for direct estimation of tracer kinetic parameters from undersampled DCE-MRI data. Rastogi A; Yalavarthy PK Med Phys; 2024 Jul; 51(7):4838-4858. PubMed ID: 38214325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]