These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3874912)

  • 61. Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2.
    Suzuki R; Suzuki S; Ebina N; Kumagai K
    J Immunol; 1985 Apr; 134(4):2139-48. PubMed ID: 2579129
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Regulation of in vitro cytotoxic T lymphocyte generation. III. Interactions or regulatory T cell subsets in suppressor and target populations.
    Schwartz A; Gershon RK
    J Mol Cell Immunol; 1984; 1(4):237-52. PubMed ID: 6152894
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Differential requirement of protein tyrosine kinases and protein kinase C in the regulation of T cell locomotion in three-dimensional collagen matrices.
    Entschladen F; Niggemann B; Zänker KS; Friedl P
    J Immunol; 1997 Oct; 159(7):3203-10. PubMed ID: 9317118
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface markers of T cells causing lethal graft-vs-host disease to class I vs class II H-2 differences.
    Korngold R; Sprent J
    J Immunol; 1985 Nov; 135(5):3004-10. PubMed ID: 3876371
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stimulation of murine T cells via the Ly-6C antigen: lack of proliferative response in aberrant T cells from lpr/lpr and gld/gld mice despite high Ly-6C antigen expression.
    Dumont FJ
    J Immunol; 1987 Jun; 138(12):4106-13. PubMed ID: 2438334
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Higher frequency of Leishmania major-specific L3T4+ T cells in susceptible BALB/c as compared with resistant CBA mice.
    Milon G; Titus RG; Cerottini JC; Marchal G; Louis JA
    J Immunol; 1986 Feb; 136(4):1467-71. PubMed ID: 2418115
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of tumor-associated lymphocytes in a series of mouse mammary tumor lines with differing biological properties.
    Rios AM; Miller FR; Heppner GH
    Cancer Immunol Immunother; 1983; 15(2):87-91. PubMed ID: 6553517
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inflammatory infiltrates of experimental mammary cancers.
    Wei WZ; Ratner S; Fulton AM; Heppner GH
    Biochim Biophys Acta; 1986 Aug; 865(1):13-26. PubMed ID: 3089280
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Lymphocyte locomotion in three-dimensional collagen gels. Comparison of three quantitative methods for analysing cell trajectories.
    Friedl P; Noble PB; Zänker KS
    J Immunol Methods; 1993 Oct; 165(2):157-65. PubMed ID: 7901283
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of surgery on peripheral blood lymphocyte locomotion through type I collagen.
    Gutman H; Risin D; Pollock RE; Pellis NR
    Cancer; 1993 May; 71(9):2833-7. PubMed ID: 8467461
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Locomotory phenotypes of human tumor cell lines and T lymphocytes in a three-dimensional collagen lattice.
    Niggemann B; Maaser K; Lü H; Kroczek R; Zänker KS; Friedl P
    Cancer Lett; 1997 Oct; 118(2):173-80. PubMed ID: 9459207
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Locomotion through three-dimensional type I rat tail collagen. A modified mini-assay.
    Gutman H; Risin D; Katz BP; Pellis NR
    J Immunol Methods; 1993 Jan; 157(1-2):175-80. PubMed ID: 8423361
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices.
    Haston WS; Shields JM; Wilkinson PC
    J Cell Biol; 1982 Mar; 92(3):747-52. PubMed ID: 7085756
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparative locomotory behavior of T lymphocytes versus T lymphoma cells on flat and grooved surfaces.
    Mello AP; Volkov Y; Kelleher D; Prendergast PJ
    Ann Biomed Eng; 2003 Oct; 31(9):1106-13. PubMed ID: 14582613
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Contraction waves in lymphocyte locomotion.
    Haston WS; Shields JM
    J Cell Sci; 1984 Jun; 68():227-41. PubMed ID: 6149228
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Methodology for detection of heterogeneity of cell locomotory phenotypes in three-dimensional gels.
    Shields ED; Noble PB
    Exp Cell Biol; 1987; 55(5):250-6. PubMed ID: 3443220
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Suppression of antigen-specific lymphocyte activation in modeled microgravity.
    Cooper D; Pride MW; Brown EL; Risin D; Pellis NR
    In Vitro Cell Dev Biol Anim; 2001 Feb; 37(2):63-5. PubMed ID: 11332738
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Changes in gravity inhibit lymphocyte locomotion through type I collagen.
    Pellis NR; Goodwin TJ; Risin D; McIntyre BW; Pizzini RP; Cooper D; Baker TL; Spaulding GF
    In Vitro Cell Dev Biol Anim; 1997 May; 33(5):398-405. PubMed ID: 9196900
    [TBL] [Abstract][Full Text] [Related]  

  • 79. T cell locomotion in the tumor microenvironment. I. A collagen-matrix assay.
    Ratner S; Heppner GH
    J Immunol; 1985 Sep; 135(3):2220-7. PubMed ID: 3874912
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The migration of activated murine T lymphocytes in vitro. II. Evidence for differential locomotion of T cell subsets.
    Hoffman RA; Ascher NL; Hanto DW; Simmons RL
    J Immunol; 1983 Apr; 130(4):1610-5. PubMed ID: 6601129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.