BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38749286)

  • 1. A novel near-infrared polymethine dye biosensor for rapid and selective detection of lithocholic acid.
    Zheng J; Zhang W; Gong Y; Liang W; Leng Y
    Biosens Bioelectron; 2024 Sep; 259():116383. PubMed ID: 38749286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical detection of lithocholic acid with liquid crystal emulsions.
    Bera T; Fang J
    Langmuir; 2013 Jan; 29(1):387-92. PubMed ID: 23252423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and sensitive quantification of human liver cytosolic lithocholic acid sulfation using ultra-high performance liquid chromatography-tandem mass spectrometry.
    Bansal S; Lau AJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():171-8. PubMed ID: 26773894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves.
    Ogulchansky TY; Losytskyy MY; Kovalska VB; Lukashov SS; Yashchuk VM; Yarmoluk SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Nov; 57(13):2705-15. PubMed ID: 11765797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral-fluorescent study of the interaction of the polymethine dye probe Cyan 2 with chondroitin-4-sulfate.
    Tatikolov АS; Akimkin TM; Panova IG; Yarmoluk SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Apr; 177():93-96. PubMed ID: 28129579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared mito-specific fluorescent probe for ratiometric detection and imaging of alkaline phosphatase activity with high sensitivity.
    Zhang Q; Li S; Fu C; Xiao Y; Zhang P; Ding C
    J Mater Chem B; 2019 Jan; 7(3):443-450. PubMed ID: 32254731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples.
    Li F; Rui J; Yan Z; Qiu P; Tang X
    Mikrochim Acta; 2021 Aug; 188(9):311. PubMed ID: 34455515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Spherulitic J-Aggregates from the Coassembly of Lithocholic Acid and Cyanine Dye.
    Rhodes S; Liang W; Shteinberg E; Fang J
    J Phys Chem Lett; 2017 Sep; 8(18):4504-4509. PubMed ID: 28872876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid crystals-based sensor for the detection of lithocholic acid coupled with competitive host-guest inclusion.
    Ma H; Kang Q; Wang T; Xiao J; Yu L
    Colloids Surf B Biointerfaces; 2019 Jan; 173():178-184. PubMed ID: 30292930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Engineering of Hybrid Polydopamine/Polypyrrole Nanosheets with Narrow Band Gaps for Fluorescence Sensing of MicroRNA.
    Yang M; Wang Z; Ding T; Tang J; Xie X; Xing Y; Wang L; Zhang J; Cai K
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):42183-42194. PubMed ID: 34435770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrahepatic deposition and cytotoxicity of lithocholic acid: studies in two hamster models of hepatic failure and in cultured human fibroblasts.
    Ceryak S; Bouscarel B; Malavolti M; Fromm H
    Hepatology; 1998 Feb; 27(2):546-56. PubMed ID: 9462656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (Cys) in living cells.
    Cai S; Liu C; Jiao X; Zhao L; Zeng X
    J Mater Chem B; 2020 Mar; 8(11):2269-2274. PubMed ID: 32100785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultra-high performance liquid chromatography-tandem mass spectrometric assay for quantifying 3-ketocholanoic acid: Application to the human liver microsomal CYP3A-dependent lithocholic acid 3-oxidation assay.
    Bansal S; Chai SF; Lau AJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jun; 1023-1024():1-8. PubMed ID: 27153105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(azomethine-urethane) and zeolite-based composite: Fluorescent biosensor for DNA detection.
    Kamaci UD; Kamaci M; Peksel A
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():232-239. PubMed ID: 30641363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrasensitive and simple fluorescence biosensor for detection of the Kras wild type by using the three-way DNA junction-driven catalyzed hairpin assembly strategy.
    Li Q; Zhou D; Pan J; Liu Z; Chen J
    Analyst; 2019 May; 144(9):3088-3093. PubMed ID: 30919845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Davydov Split Aggregates of Cyanine Dyes on Self-Assembled Nanotubes.
    Reddy NR; Rhodes S; Ma Y; Fang J
    Langmuir; 2020 Nov; 36(45):13649-13655. PubMed ID: 33143426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly selective photoelectrochemical biosensor for uric acid based on core-shell Fe3O4@C nanoparticle and molecularly imprinted TiO2.
    Zhang C; Si S; Yang Z
    Biosens Bioelectron; 2015 Mar; 65():115-20. PubMed ID: 25461147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared fluorescence nanoprobe for enzyme-substrate system sensing and in vitro imaging.
    Yan X; Hu T; Wang L; Zhang L; Su X
    Biosens Bioelectron; 2016 May; 79():922-9. PubMed ID: 26802574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel peptide/Fe
    Yang L; Li N; Wang K; Hai X; Liu J; Dang F
    Talanta; 2018 Mar; 179():531-537. PubMed ID: 29310271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal aptameric biosensor: Multiplexed detection of small analytes via aggregated perylene-based broad-spectrum quencher.
    Hu R; Zhang X; Xu Q; Lu DQ; Yang YH; Xu QQ; Ruan Q; Mo LT; Zhang XB
    Biosens Bioelectron; 2017 Jun; 92():40-46. PubMed ID: 28187297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.