BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38749324)

  • 1. Improving the classification of multiple sclerosis and cerebral small vessel disease with interpretable transfer attention neural network.
    Xu W; Rong Z; Ma W; Zhu B; Li N; Huang J; Liu Z; Yu Y; Zhang F; Zhang X; Ge M; Hou Y
    Comput Biol Med; 2024 Jun; 176():108530. PubMed ID: 38749324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple sclerosis: High prevalence of the 'central vein' sign in white matter lesions on susceptibility-weighted images.
    Sparacia G; Agnello F; Gambino A; Sciortino M; Midiri M
    Neuroradiol J; 2018 Aug; 31(4):356-361. PubMed ID: 29565219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation.
    Eitel F; Soehler E; Bellmann-Strobl J; Brandt AU; Ruprecht K; Giess RM; Kuchling J; Asseyer S; Weygandt M; Haynes JD; Scheel M; Paul F; Ritter K
    Neuroimage Clin; 2019; 24():102003. PubMed ID: 31634822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning.
    Narayana PA; Coronado I; Sujit SJ; Sun X; Wolinsky JS; Gabr RE
    Magn Reson Imaging; 2020 Jan; 65():8-14. PubMed ID: 31670238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for discrimination of active and inactive lesions in multiple sclerosis using non-contrast FLAIR MRI: A multicenter study.
    Amini A; Shayganfar A; Amini Z; Ostovar L; HajiAhmadi S; Chitsaz N; Rabbani M; Kafieh R
    Mult Scler Relat Disord; 2024 Jul; 87():105642. PubMed ID: 38703520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based on susceptibility-weighted MR sequence for detecting cerebral microbleeds and classifying cerebral small vessel disease.
    Wu R; Liu H; Li H; Chen L; Wei L; Huang X; Liu X; Men X; Li X; Han L; Lu Z; Qin B
    Biomed Eng Online; 2023 Oct; 22(1):99. PubMed ID: 37848906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple sclerosis versus cerebral small vessel disease in MRI: a practical approach using qualitative and quantitative signal intensity differences in white matter lesions.
    Yuzkan S; Balsak S; Cinkir U; Kocak B
    Acta Radiol; 2024 Jan; 65(1):106-114. PubMed ID: 36862588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSMRim-Net: Imbalance-aware learning for identification of chronic active multiple sclerosis lesions on quantitative susceptibility maps.
    Zhang H; Nguyen TD; Zhang J; Marcille M; Spincemaille P; Wang Y; Gauthier SA; Sweeney EM
    Neuroimage Clin; 2022; 34():102979. PubMed ID: 35247730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images.
    Moazami F; Lefevre-Utile A; Papaloukas C; Soumelis V
    Front Immunol; 2021; 12():700582. PubMed ID: 34456913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI.
    Coll L; Pareto D; Carbonell-Mirabent P; Cobo-Calvo Á; Arrambide G; Vidal-Jordana Á; Comabella M; Castilló J; Rodrı Guez-Acevedo B; Zabalza A; Galán I; Midaglia L; Nos C; Auger C; Alberich M; Río J; Sastre-Garriga J; Oliver A; Montalban X; Rovira À; Tintoré M; Lladó X; Tur C
    J Magn Reson Imaging; 2024 Jul; 60(1):258-267. PubMed ID: 37803817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging.
    Huang C; Chen W; Liu B; Yu R; Chen X; Tang F; Liu J; Lu W
    Front Immunol; 2022; 13():897959. PubMed ID: 35774780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The value of qualitative and quantitative assessment of lesion to cerebral cortex signal ratio on double inversion recovery sequence in the differentiation of demyelinating plaques from non-specific T2 hyperintensities.
    Hamcan S; Battal B; Akgun V; Oz O; Bozkurt Y; Tasdemir S; Sari S; Tasar M
    Eur Radiol; 2017 Feb; 27(2):763-771. PubMed ID: 27108302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.
    Lu H; Kashani AH; Arfanakis K; Caprihan A; DeCarli C; Gold BT; Li Y; Maillard P; Satizabal CL; Stables L; Wang DJJ; Corriveau RA; Singh H; Smith EE; Fischl B; van der Kouwe A; Schwab K; Helmer KG; Greenberg SM;
    Alzheimers Dement; 2021 Apr; 17(4):716-725. PubMed ID: 33480157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricular ejection fraction and right atrial diameter are associated with deep regional CBF in arteriosclerotic cerebral small vessel disease.
    Chen X; Lu D; Guo N; Kang Z; Zhang K; Wang J; Men X; Lu Z; Qiu W
    BMC Neurol; 2021 Feb; 21(1):67. PubMed ID: 33573621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
    Essa E; Aldesouky D; Hussein SE; Rashad MZ
    Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls.
    Yoo Y; Tang LYW; Brosch T; Li DKB; Kolind S; Vavasour I; Rauscher A; MacKay AL; Traboulsee A; Tam RC
    Neuroimage Clin; 2018; 17():169-178. PubMed ID: 29071211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images.
    Sarica B; Seker DZ; Bayram B
    Int J Med Inform; 2023 Feb; 170():104965. PubMed ID: 36580821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.