These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3874934)

  • 21. Kir subfamily in frog retina: specific spatial distribution of Kir 6.1 in glial (Müller) cells.
    Skatchkov SN; Thomzig A; Eaton MJ; Biedermann B; Eulitz D; Bringmann A; Pannicke T; Veh RW; Reichenbach A
    Neuroreport; 2001 May; 12(7):1437-41. PubMed ID: 11388425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tandem-pore domain potassium channels are functionally expressed in retinal (Müller) glial cells.
    Skatchkov SN; Eaton MJ; Shuba YM; Kucheryavykh YV; Derst C; Veh RW; Wurm A; Iandiev I; Pannicke T; Bringmann A; Reichenbach A
    Glia; 2006 Feb; 53(3):266-76. PubMed ID: 16265669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional expression of Kir 6.1/SUR1-K(ATP) channels in frog retinal Müller glial cells.
    Skatchkov SN; Rojas L; Eaton MJ; Orkand RK; Biedermann B; Bringmann A; Pannicke T; Veh RW; Reichenbach A
    Glia; 2002 May; 38(3):256-67. PubMed ID: 11968063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium waves in dissociated retinal glial (Müller) cells are evoked by release of calcium from intracellular stores.
    Keirstead SA; Miller RF
    Glia; 1995 May; 14(1):14-22. PubMed ID: 7615342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization and stoichiometry of electrogenic sodium bicarbonate cotransport in retinal glial cells.
    Newman EA; Astion ML
    Glia; 1991; 4(4):424-8. PubMed ID: 1657777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane ultrastructure preservation and membrane potentials after isolation of rabbit retinal glial (Müller) cells by papain.
    Reichenbach A; Wolburg H; Richter W; Eberhardt W
    J Neurosci Methods; 1990 Jun; 32(3):227-33. PubMed ID: 2385140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Müller cell function during spreading depression in frog retina.
    Mori S; Miller WH; Tomita T
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):1351-4. PubMed ID: 1083528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of potassium levels by Müller cells in the vertebrate retina.
    Newman EA
    Can J Physiol Pharmacol; 1987 May; 65(5):1028-32. PubMed ID: 2441827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inwardly rectifying K+ channel in retinal Müller cells: comparison with the KAB-2/Kir4.1 channel expressed in HEK293T cells.
    Tada Y; Horio Y; Kurachi Y
    Jpn J Physiol; 1998 Feb; 48(1):71-80. PubMed ID: 9538292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels.
    Nilius B; Reichenbach A
    Pflugers Arch; 1988 Jun; 411(6):654-60. PubMed ID: 2457869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphometric parameters of Müller (glial) cells dependent on their topographic localization in the nonmyelinated part of the rabbit retina. A consideration of functional aspects of radial glia.
    Reichenbach A; Wohlrab F
    J Neurocytol; 1986 Aug; 15(4):451-9. PubMed ID: 3746355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model of electroretinogram b-wave generation: a test of the K+ hypothesis.
    Newman EA; Odette LL
    J Neurophysiol; 1984 Jan; 51(1):164-82. PubMed ID: 6319623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. K+ Channel density increases selectively in the endfoot of retinal glial cells during development of Rana catesbiana.
    Rojas L; Orkand RK
    Glia; 1999 Jan; 25(2):199-203. PubMed ID: 9890634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tandem-pore K(+) channels display an uneven distribution in amphibian retina.
    Eaton MJ; Veh RW; Makarov F; Shuba YM; Reichenbach A; Skatchkov SN
    Neuroreport; 2004 Feb; 15(2):321-4. PubMed ID: 15076761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Müller (glial) cell in normal and diseased retina: a case for single-cell electrophysiology.
    Reichenbach A; Faude F; Enzmann V; Bringmann A; Pannicke T; Francke M; Biedermann B; Kuhrt H; Stolzenburg JU; Skatchkov SN; Heinemann U; Wiedemann P; Reichelt W
    Ophthalmic Res; 1997; 29(5):326-40. PubMed ID: 9323724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial buffering of extracellular potassium by Müller (glial) cells in the toad retina.
    Oakley B; Katz BJ; Xu Z; Zheng J
    Exp Eye Res; 1992 Oct; 55(4):539-50. PubMed ID: 1483500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering.
    Brew H; Gray PT; Mobbs P; Attwell D
    Nature; 1986 Dec 4-10; 324(6096):466-8. PubMed ID: 2431322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of cutting the optic nerve on K+ currents in endfeet of Muller cells isolated from frog retina.
    Skatchkov SN; Vyklicky L; Clasen T; Orkand RK
    Neurosci Lett; 1996 Apr; 208(2):81-4. PubMed ID: 8859895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina.
    Spiridon M; Kamm D; Billups B; Mobbs P; Attwell D
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):363-76. PubMed ID: 9490865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential distribution of glycine transporters in Müller cells and neurons in amphibian retinas.
    Jiang Z; Li B; Jursky F; Shen W
    Vis Neurosci; 2007; 24(2):157-68. PubMed ID: 17640406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.