BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38749378)

  • 1. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery.
    Zhou X; Liu H; Yu Z; Yu H; Meng D; Zhu L; Li H
    J Colloid Interface Sci; 2024 Sep; 670():1-11. PubMed ID: 38749378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Microneedle Patches via Direct Ink Drawing of Nanocomposite Inks for Personalized Transdermal Drug Delivery.
    Li Y; Chen K; Pang Y; Zhang J; Wu M; Xu Y; Cao S; Zhang X; Wang S; Sun Y; Ning X; Wang X; Kong D
    ACS Nano; 2023 Oct; 17(20):19925-19937. PubMed ID: 37805947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-mediated fabrication of nanocomposite hydrogel microneedles for tunable mechanical strength and controllable transdermal efficiency.
    Chi Y; Zheng Y; Pan X; Huang Y; Kang Y; Zhong W; Xu K
    Acta Biomater; 2024 Jan; 174():127-140. PubMed ID: 38042262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery.
    Liu H; Zhou X; Nail A; Yu H; Yu Z; Sun Y; Wang K; Bao N; Meng D; Zhu L; Li H
    J Control Release; 2024 Apr; 368():115-130. PubMed ID: 38367865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery.
    Che QT; Seo JW; Charoensri K; Nguyen MH; Park HJ; Bae H
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129638. PubMed ID: 38266841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes.
    Wu M; Zhang Y; Huang H; Li J; Liu H; Guo Z; Xue L; Liu S; Lei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111299. PubMed ID: 32919660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery.
    Caudill CL; Perry JL; Tian S; Luft JC; DeSimone JM
    J Control Release; 2018 Aug; 284():122-132. PubMed ID: 29894710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing applications for transdermal drug delivery.
    Economidou SN; Lamprou DA; Douroumis D
    Int J Pharm; 2018 Jun; 544(2):415-424. PubMed ID: 29355656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery.
    Gholami S; Mohebi MM; Hajizadeh-Saffar E; Ghanian MH; Zarkesh I; Baharvand H
    Int J Pharm; 2019 Mar; 558():299-310. PubMed ID: 30654056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical evaluation of precisely manufacturing customized microneedle array patches via inkjet drug printing.
    Lammerding LC; Breitkreutz J
    Int J Pharm; 2023 Jul; 642():123173. PubMed ID: 37369288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide.
    Lim SH; Kathuria H; Amir MHB; Zhang X; Duong HTT; Ho PC; Kang L
    J Control Release; 2021 Jan; 329():907-918. PubMed ID: 33068646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed morphology-customized microneedles: Understanding the correlation between their morphologies and the received qualities.
    Yang Q; Zhong W; Liu Y; Hou R; Wu Y; Yan Q; Yang G
    Int J Pharm; 2023 May; 638():122873. PubMed ID: 36958610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in microneedle-based transdermal delivery for drugs and peptides.
    Aich K; Singh T; Dang S
    Drug Deliv Transl Res; 2022 Jul; 12(7):1556-1568. PubMed ID: 34564827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Hydrogel-Filled Microneedle Arrays.
    Barnum L; Quint J; Derakhshandeh H; Samandari M; Aghabaglou F; Farzin A; Abbasi L; Bencherif S; Memic A; Mostafalu P; Tamayol A
    Adv Healthc Mater; 2021 Jul; 10(13):e2001922. PubMed ID: 34050600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Ion-Responsive Personalized Transdermal Patch.
    Zhu D; Peng X; Li L; Zhang J; Xiao P
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):14113-14123. PubMed ID: 38442338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed microneedles for transdermal drug delivery: A brief review of two decades.
    Elahpour N; Pahlevanzadeh F; Kharaziha M; Bakhsheshi-Rad HR; Ramakrishna S; Berto F
    Int J Pharm; 2021 Mar; 597():120301. PubMed ID: 33540018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial releasing hydrogel forming microneedles.
    Turner JG; Laabei M; Li S; Estrela P; Leese HS
    Biomater Adv; 2023 Aug; 151():213467. PubMed ID: 37236117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery.
    Li JY; Feng YH; He YT; Hu LF; Liang L; Zhao ZQ; Chen BZ; Guo XD
    Acta Biomater; 2022 Nov; 153():308-319. PubMed ID: 36055607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Photolithographic Fabrication of Zwitterionic Polymer Microneedles with Protein Aggregation Inhibition for Transdermal Drug Delivery.
    Pitakjakpipop H; Rajan R; Tantisantisom K; Opaprakasit P; Nguyen DD; Ho VA; Matsumura K; Khanchaitit P
    Biomacromolecules; 2022 Jan; 23(1):365-376. PubMed ID: 34914881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress of 3D-printed microneedles for transdermal drug delivery.
    Yang Q; Zhong W; Xu L; Li H; Yan Q; She Y; Yang G
    Int J Pharm; 2021 Jan; 593():120106. PubMed ID: 33232756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.