BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38749457)

  • 1. Transformer-CNN hybrid network for improving PET time of flight prediction.
    Feng X; Muhashi A; Onishi Y; Ota R; Liu H
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38749457
    [No Abstract]   [Full Text] [Related]  

  • 2. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms.
    Berg E; Cherry SR
    Phys Med Biol; 2018 Jan; 63(2):02LT01. PubMed ID: 29182151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low power implementation of high frequency SiPM readout for Cherenkov and scintillation detectors in TOF-PET.
    Cates JW; Choong WS
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 35961297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility study of a point-of-care positron emission tomography system with interactive imaging capability.
    Jiang J; Li K; Komarov S; O'Sullivan JA; Tai YC
    Med Phys; 2019 Apr; 46(4):1798-1813. PubMed ID: 30667069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-learning-based fast TOF-PET image reconstruction using direction information.
    Ote K; Hashimoto F
    Radiol Phys Technol; 2022 Mar; 15(1):72-82. PubMed ID: 35132574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation study on 3D convolutional neural networks for time-of-flight prediction in monolithic PET detectors using digitized waveforms.
    Maebe J; Vandenberghe S
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35617948
    [No Abstract]   [Full Text] [Related]  

  • 7. Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission.
    Gundacker S; Martinez Turtos R; Kratochwil N; Pots RH; Paganoni M; Lecoq P; Auffray E
    Phys Med Biol; 2020 Jan; 65(2):025001. PubMed ID: 31851947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unbiased TOF estimation using leading-edge discriminator and convolutional neural network trained by single-source-position waveforms.
    Onishi Y; Hashimoto F; Ote K; Ota R
    Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35100575
    [No Abstract]   [Full Text] [Related]  

  • 9. Performance of long rectangular semi-monolithic scintillator PET detectors.
    Zhang X; Wang X; Ren N; Hu B; Ding B; Kuang Z; Wu S; Sang Z; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2019 Apr; 46(4):1608-1619. PubMed ID: 30723932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation study of a brain PET scanner using TOF-DOI detectors equipped with first interaction position detection.
    Li Y; Watanabe M; Isobe T; Ote K; Tokui A; Omura T; Liu H
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36560889
    [No Abstract]   [Full Text] [Related]  

  • 11. Performance evaluation of the FastIC readout ASIC with emphasis on Cherenkov emission in TOF-PET.
    Piller M; Castilla AM; Terragni G; Alozy J; Auffray E; Ballabriga R; Campbell M; Deutschmann B; Gascon D; Gola A; Merzi S; Michalowska-Forsyth A; Penna M; Gómez S; Kratochwil N
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657637
    [No Abstract]   [Full Text] [Related]  

  • 12. Sub-2 mm depth of interaction localization in PET detectors with prismatoid light guide arrays and single-ended readout using convolutional neural networks.
    LaBella A; Cao X; Zeng X; Zhao W; Goldan AH
    Med Phys; 2021 Mar; 48(3):1019-1025. PubMed ID: 33305482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spach Transformer: Spatial and Channel-Wise Transformer Based on Local and Global Self-Attentions for PET Image Denoising.
    Jang SI; Pan T; Li Y; Heidari P; Chen J; Li Q; Gong K
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2036-2049. PubMed ID: 37995174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET.
    Gundacker S; Turtos RM; Auffray E; Paganoni M; Lecoq P
    Phys Med Biol; 2019 Feb; 64(5):055012. PubMed ID: 30630146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-100 ps coincidence time resolution for positron emission tomography with LSO:Ce codoped with Ca.
    Nemallapudi MV; Gundacker S; Lecoq P; Auffray E; Ferri A; Gola A; Piemonte C
    Phys Med Biol; 2015 Jun; 60(12):4635-49. PubMed ID: 26020610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing advances of commercial divalent-ion co-doped LYSO:Ce and SiPMs in sub-100 ps time-of-flight positron emission tomography.
    Nadig V; Herweg K; Chou MMC; Lin JWC; Chin E; Li CA; Schulz V; Gundacker S
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36808914
    [No Abstract]   [Full Text] [Related]  

  • 18. Sub-3 mm, near-200 ps TOF/DOI-PET imaging with monolithic scintillator detectors in a 70 cm diameter tomographic setup.
    Borghi G; Tabacchini V; Bakker R; Schaart DR
    Phys Med Biol; 2018 Jul; 63(15):155006. PubMed ID: 29995639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On light sharing TOF-PET modules with depth of interaction and 157 ps FWHM coincidence time resolution.
    Pizzichemi M; Polesel A; Stringhini G; Gundacker S; Lecoq P; Tavernier S; Paganoni M; Auffray E
    Phys Med Biol; 2019 Aug; 64(15):155008. PubMed ID: 31239430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical performance of the new hybrid PET∕CT Discovery-690.
    Bettinardi V; Presotto L; Rapisarda E; Picchio M; Gianolli L; Gilardi MC
    Med Phys; 2011 Oct; 38(10):5394-411. PubMed ID: 21992359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.