BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38749916)

  • 1. The Peptide Bond: Resonance Increases Bond Order and Complicates Fragmentation.
    Fedorov DG
    Chemphyschem; 2024 May; ():e202400170. PubMed ID: 38749916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2018 Feb; 122(6):1781-1795. PubMed ID: 29337557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic second derivatives for the efficient electrostatic embedding in the fragment molecular orbital method.
    Nakata H; Fedorov DG
    J Comput Chem; 2018 Sep; 39(25):2039-2050. PubMed ID: 30299549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pair interaction energy decomposition analysis.
    Fedorov DG; Kitaura K
    J Comput Chem; 2007 Jan; 28(1):222-37. PubMed ID: 17109433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG; Nagata T; Kitaura K; Nakamura S
    J Chem Theory Comput; 2015 Jul; 11(7):3053-64. PubMed ID: 26575742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum bonding fragment orbitals for deciphering complex chemical interactions.
    Wang Y
    Phys Chem Chem Phys; 2018 May; 20(20):13792-13809. PubMed ID: 29745413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A challenge to chemical intuition: donor-acceptor interactions in H3B-L and H2B+-L (L=CO; EC5H5, E=N-Bi).
    Erhardt S; Frenking G
    Chemistry; 2006 Jun; 12(17):4620-9. PubMed ID: 16598798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method.
    Nakata H; Fedorov DG
    J Phys Chem A; 2016 Dec; 120(49):9794-9804. PubMed ID: 27973804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Proton NMR in Hydrogen Bonds in Terms of Lone-Pair and Bond Orbital Contributions.
    Sutter K; Aucar GA; Autschbach J
    Chemistry; 2015 Dec; 21(50):18138-55. PubMed ID: 26442441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lone-pair orbital interactions in polythiaadamantanes.
    Norton JE; Briseno AL; Wudl F; Houk KN
    J Phys Chem A; 2006 Aug; 110(32):9887-99. PubMed ID: 16898691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Constricted Variational Density Functional Theory to Excitations Involving Electron Transitions from Occupied Lone-Pair Orbitals to Virtual π* Orbitals.
    Ziegler T; Krykunov M; Cullen J
    J Chem Theory Comput; 2011 Aug; 7(8):2485-91. PubMed ID: 26606622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjacent Lone Pair (ALP) Effect: A Computational Approach for Its Origin.
    Zhang H; Wu W; Ahmed BM; Mezei G; Mo Y
    Chemistry; 2016 May; 22(22):7415-21. PubMed ID: 27139318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragmentation at sp
    Akinaga Y; Kato K; Nakano T; Fukuzawa K; Mochizuki Y
    J Comput Chem; 2020 Jun; 41(15):1416-1420. PubMed ID: 32196699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins.
    Fedorov DG; Ishida T; Uebayasi M; Kitaura K
    J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Bond Order of C2 from a Strictly N-Representable Natural Orbital Energy Functional Perspective.
    Piris M; Lopez X; Ugalde JM
    Chemistry; 2016 Mar; 22(12):4109-15. PubMed ID: 26822104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new look at the ylidic bond in phosphorus ylides and related compounds: energy decomposition analysis combined with a domain-averaged fermi hole analysis.
    Calhorda MJ; Krapp A; Frenking G
    J Phys Chem A; 2007 Apr; 111(15):2859-69. PubMed ID: 17388399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital overlap and chemical bonding.
    Krapp A; Bickelhaupt FM; Frenking G
    Chemistry; 2006 Dec; 12(36):9196-216. PubMed ID: 17024702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.