These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38750084)

  • 1. Prediction of treatment response after stereotactic radiosurgery of brain metastasis using deep learning and radiomics on longitudinal MRI data.
    Cho SJ; Cho W; Choi D; Sim G; Jeong SY; Baik SH; Bae YJ; Choi BS; Kim JH; Yoo S; Han JH; Kim CY; Choo J; Sunwoo L
    Sci Rep; 2024 May; 14(1):11085. PubMed ID: 38750084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Response to Stereotactic Radiosurgery for Brain Metastases Using Convolutional Neural Networks.
    Cha YJ; Jang WI; Kim MS; Yoo HJ; Paik EK; Jeong HK; Youn SM
    Anticancer Res; 2018 Sep; 38(9):5437-5445. PubMed ID: 30194200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a radiomics-based prediction pipeline for the response to stereotactic radiosurgery therapy in brain metastases.
    Du P; Liu X; Xiang R; Lv K; Chen H; Liu W; Cao A; Chen L; Wang X; Yu T; Ding J; Li W; Li J; Li Y; Yu Z; Zhu L; Liu J; Geng D
    Eur Radiol; 2023 Dec; 33(12):8925-8935. PubMed ID: 37505244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe MK; Chen MM; Briere TM; Wang Y; Son JB; Pagel MD; Li J; Ma J
    Radiology; 2020 May; 295(2):407-415. PubMed ID: 32181729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics outperforms semantic features for prediction of response to stereotactic radiosurgery in brain metastases.
    Gutsche R; Lohmann P; Hoevels M; Ruess D; Galldiks N; Visser-Vandewalle V; Treuer H; Ruge M; Kocher M
    Radiother Oncol; 2022 Jan; 166():37-43. PubMed ID: 34801629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting stereotactic radiosurgery outcomes with multi-observer qualitative appearance labelling versus MRI radiomics.
    DeVries DA; Tang T; Albweady A; Leung A; Laba J; Johnson C; Lagerwaard F; Zindler J; Hajdok G; Ward AD
    Sci Rep; 2023 Nov; 13(1):20977. PubMed ID: 38017055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance sensitivity analysis of brain metastasis stereotactic radiosurgery outcome prediction using MRI radiomics.
    DeVries DA; Lagerwaard F; Zindler J; Yeung TPC; Rodrigues G; Hajdok G; Ward AD
    Sci Rep; 2022 Dec; 12(1):20975. PubMed ID: 36471160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning.
    Jaberipour M; Soliman H; Sahgal A; Sadeghi-Naini A
    Sci Rep; 2021 Nov; 11(1):21620. PubMed ID: 34732781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SRTRP-Net: A multi-task learning network for segmentation and prediction of stereotactic radiosurgery treatment response in brain metastases.
    Liu X; Du P; Dai Z; Yi R; Liu W; Wu H; Geng D; Liu J
    Comput Biol Med; 2024 Jun; 175():108503. PubMed ID: 38688125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodality MRI-based radiomics approach to predict the posttreatment response of lung cancer brain metastases to gamma knife radiosurgery.
    Jiang Z; Wang B; Han X; Zhao P; Gao M; Zhang Y; Wei P; Lan C; Liu Y; Li D
    Eur Radiol; 2022 Apr; 32(4):2266-2276. PubMed ID: 34978579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of treatment response in patients with brain metastasis receiving stereotactic radiosurgery based on pre-treatment multimodal MRI radiomics and clinical risk factors: A machine learning model.
    Du P; Liu X; Shen L; Wu X; Chen J; Chen L; Cao A; Geng D
    Front Oncol; 2023; 13():1114194. PubMed ID: 36994193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.
    Liu Y; Stojadinovic S; Hrycushko B; Wardak Z; Lau S; Lu W; Yan Y; Jiang SB; Zhen X; Timmerman R; Nedzi L; Gu X
    PLoS One; 2017; 12(10):e0185844. PubMed ID: 28985229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing false positives in deep learning-based brain metastasis detection by using both gradient-echo and spin-echo contrast-enhanced MRI: validation in a multi-center diagnostic cohort.
    Yun S; Park JE; Kim N; Park SY; Kim HS
    Eur Radiol; 2024 May; 34(5):2873-2884. PubMed ID: 37891415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes.
    Kushnirsky M; Nguyen V; Katz JS; Steinklein J; Rosen L; Warshall C; Schulder M; Knisely JP
    J Neurosurg; 2016 Feb; 124(2):489-95. PubMed ID: 26361281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation.
    Yang Z; Chen M; Kazemimoghadam M; Ma L; Stojadinovic S; Timmerman R; Dan T; Wardak Z; Lu W; Gu X
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34952535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI Detection of Changes in Tissue Sodium Concentration in Brain Metastases after Stereotactic Radiosurgery: A Feasibility Study.
    A Mohamed S; Adlung A; Ruder AM; Hoesl MAU; Schad L; Groden C; Giordano FA; Neumaier-Probst E
    J Neuroimaging; 2021 Mar; 31(2):297-305. PubMed ID: 33351997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data.
    Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M
    Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.
    Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S
    BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI.
    Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y
    J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics.
    Peng L; Parekh V; Huang P; Lin DD; Sheikh K; Baker B; Kirschbaum T; Silvestri F; Son J; Robinson A; Huang E; Ames H; Grimm J; Chen L; Shen C; Soike M; McTyre E; Redmond K; Lim M; Lee J; Jacobs MA; Kleinberg L
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(4):1236-1243. PubMed ID: 30353872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.