These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38750234)

  • 41. Seasonal modulation of phytoplankton biomass in the Southern Ocean.
    Arteaga LA; Boss E; Behrenfeld MJ; Westberry TK; Sarmiento JL
    Nat Commun; 2020 Oct; 11(1):5364. PubMed ID: 33097697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An observing system simulation for Southern Ocean carbon dioxide uptake.
    Majkut JD; Carter BR; Frölicher TL; Dufour CO; Rodgers KB; Sarmiento JL
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2019):20130046. PubMed ID: 24891388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global iron connections between desert dust, ocean biogeochemistry, and climate.
    Jickells TD; An ZS; Andersen KK; Baker AR; Bergametti G; Brooks N; Cao JJ; Boyd PW; Duce RA; Hunter KA; Kawahata H; Kubilay N; laRoche J; Liss PS; Mahowald N; Prospero JM; Ridgwell AJ; Tegen I; Torres R
    Science; 2005 Apr; 308(5718):67-71. PubMed ID: 15802595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat.
    Du J; Mix AC; Haley BA; Belanger CL; Sharon
    Nature; 2022 Nov; 611(7934):74-80. PubMed ID: 36323809
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton.
    Ryan-Keogh TJ; Thomalla SJ; Monteiro PMS; Tagliabue A
    Science; 2023 Feb; 379(6634):834-840. PubMed ID: 36821685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The polar ocean and glacial cycles in atmospheric CO(2) concentration.
    Sigman DM; Hain MP; Haug GH
    Nature; 2010 Jul; 466(7302):47-55. PubMed ID: 20596012
    [TBL] [Abstract][Full Text] [Related]  

  • 47. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean.
    Barkley AE; Prospero JM; Mahowald N; Hamilton DS; Popendorf KJ; Oehlert AM; Pourmand A; Gatineau A; Panechou-Pulcherie K; Blackwelder P; Gaston CJ
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16216-16221. PubMed ID: 31358622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoplankton: The dominant vector for carbon export across the Atlantic Southern Ocean in spring.
    Flynn RF; Haraguchi L; McQuaid J; Burger JM; Mutseka Lunga P; Stirnimann L; Samanta S; Roychoudhury AN; Fawcett SE
    Sci Adv; 2023 Dec; 9(48):eadi3059. PubMed ID: 38039363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dust in the Earth system: the biogeochemical linking of land, air and sea.
    Ridgwell AJ
    Philos Trans A Math Phys Eng Sci; 2002 Dec; 360(1801):2905-24. PubMed ID: 12626273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron in the NEEM ice core relative to Asian loess records over the last glacial-interglacial cycle.
    Xiao C; Du Z; Handley MJ; Mayewski PA; Cao J; Schüpbach S; Zhang T; Petit JR; Li C; Han Y; Li Y; Ren J
    Natl Sci Rev; 2021 Jul; 8(7):nwaa144. PubMed ID: 34691679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release.
    Rose KA; Sikes EL; Guilderson TP; Shane P; Hill TM; Zahn R; Spero HJ
    Nature; 2010 Aug; 466(7310):1093-7. PubMed ID: 20740012
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export.
    Hopwood MJ; Carroll D; Höfer J; Achterberg EP; Meire L; Le Moigne FAC; Bach LT; Eich C; Sutherland DA; González HE
    Nat Commun; 2019 Nov; 10(1):5261. PubMed ID: 31748607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ecology of southern ocean pack ice.
    Brierley AS; Thomas DN
    Adv Mar Biol; 2002; 43():171-276. PubMed ID: 12154613
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In and out of glacial extremes by way of dust-climate feedbacks.
    Shaffer G; Lambert F
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2026-2031. PubMed ID: 29440407
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica.
    Winckler G; Anderson RF; Fleisher MQ; McGee D; Mahowald N
    Science; 2008 Apr; 320(5872):93-6. PubMed ID: 18309048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sustained climate warming drives declining marine biological productivity.
    Moore JK; Fu W; Primeau F; Britten GL; Lindsay K; Long M; Doney SC; Mahowald N; Hoffman F; Randerson JT
    Science; 2018 Mar; 359(6380):1139-1143. PubMed ID: 29590043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sea-ice transport driving Southern Ocean salinity and its recent trends.
    Haumann FA; Gruber N; Münnich M; Frenger I; Kern S
    Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
    Anbar AD; Yung YL; Chavez FP
    Global Biogeochem Cycles; 1996 Mar; 10(1):175-90. PubMed ID: 11539402
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mean global ocean temperatures during the last glacial transition.
    Bereiter B; Shackleton S; Baggenstos D; Kawamura K; Severinghaus J
    Nature; 2018 Jan; 553(7686):39-44. PubMed ID: 29300008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Migration of the subtropical front as a modulator of glacial climate.
    Bard E; Rickaby RE
    Nature; 2009 Jul; 460(7253):380-3. PubMed ID: 19606147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.