BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 38750251)

  • 1. The Mfn1-βIIPKC Interaction Regulates Mitochondrial Dysfunction via Sirt3 Following Experimental Subarachnoid Hemorrhage.
    Chen T; Wang Y; Wang YH; Hang CH
    Transl Stroke Res; 2022 Oct; 13(5):845-857. PubMed ID: 35192161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT3 protects against early brain injury following subarachnoid hemorrhage
    Wu X; Luo J; Liu H; Cui W; Feng D; Qu Y
    Chin Neurosurg J; 2020; 6():1. PubMed ID: 32922930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin Treatment Regulates SIRT3 Expression in Early Brain Injury (EBI) Due to Reactive Oxygen Species (ROS) in a Mouse Model of Subarachnoid Hemorrhage (SAH).
    Yang S; Chen X; Li S; Sun B; Hang C
    Med Sci Monit; 2018 Jun; 24():3804-3814. PubMed ID: 29872034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perampanel attenuates oxidative stress and pyroptosis following subarachnoid hemorrhage via the SIRT3/FOXO3α pathway.
    Yang H; Ding C; Cheng M; Sheng Z; Chen L; Chen J; Wang Y
    Sci Rep; 2023 Dec; 13(1):21320. PubMed ID: 38044382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage.
    Huang W; Huang Y; Huang RQ; Huang CG; Wang WH; Gu JM; Dong Y
    Biomed Res Int; 2016; 2016():8263926. PubMed ID: 28053989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction to: The Mfn1‑βIIPKC Interaction Regulates Mitochondrial Dysfunction via Sirt3 Following Experimental Subarachnoid Hemorrhage.
    Chen T; Wang Y; Wang YH; Hang CH
    Transl Stroke Res; 2024 May; ():. PubMed ID: 38750251
    [No Abstract]   [Full Text] [Related]  

  • 7. Sirtuin-3: A potential target for treating several types of brain injury.
    Yang H; Zhou Z; Liu Z; Chen J; Wang Y
    Front Cell Dev Biol; 2023; 11():1154831. PubMed ID: 37009480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage.
    Zhang J; Zhu Q; Wang J; Peng Z; Zhuang Z; Hang C; Li W
    Neural Regen Res; 2024 Apr; 19(4):825-832. PubMed ID: 37843218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial deacetylase Sirt3 in vascular dysfunction and hypertension.
    Dikalov S; Dikalova A
    Curr Opin Nephrol Hypertens; 2022 Mar; 31(2):151-156. PubMed ID: 35086984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases.
    Wu J; Zeng Z; Zhang W; Deng Z; Wan Y; Zhang Y; An S; Huang Q; Chen Z
    Free Radic Res; 2019 Feb; 53(2):139-149. PubMed ID: 30458637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3.
    Parodi-Rullán RM; Chapa-Dubocq XR; Javadov S
    Front Physiol; 2018; 9():1094. PubMed ID: 30131726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease.
    Shen Y; Wu Q; Shi J; Zhou S
    Biomed Pharmacother; 2020 Dec; 132():110928. PubMed ID: 33128944
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.