BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38750285)

  • 21. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons.
    Lin Y; Paganetti H; McMahon SJ; Schuemann J
    Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold Nanoparticle Enhanced Proton Therapy: Monte Carlo Modeling of Reactive Species' Distributions Around a Gold Nanoparticle and the Effects of Nanoparticle Proximity and Clustering.
    Peukert D; Kempson I; Douglass M; Bezak E
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study.
    Jones BL; Cho SH
    Phys Med Biol; 2011 Jun; 56(12):3719-30. PubMed ID: 21628767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer.
    Gupta N; Malviya R
    Biochim Biophys Acta Rev Cancer; 2021 Apr; 1875(2):188532. PubMed ID: 33667572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ocular brachytherapy dosimetry for 103Pd and 125I in the presence of gold nanoparticles: a Monte Carlo study.
    Asadi S; Vaez-Zadeh M; Vahidian M; Marghchouei M; Masoudi SF
    J Appl Clin Med Phys; 2016 May; 17(3):90-99. PubMed ID: 27167265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of the dose enhancement exclusively in tumor tissue due to the presence of GNPs.
    Khodadadi A; Nedaie HA; Sadeghi M; Ghassemi MR; Mesbahi A; Banaee N
    Appl Radiat Isot; 2019 Mar; 145():39-46. PubMed ID: 30580248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy.
    Manuchehrabadi N; Chen Y; Lebrun A; Ma R; Zhu L
    J Biomech Eng; 2013 Dec; 135(12):121007. PubMed ID: 24026290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thiol-Responsive Gold Nanodot Swarm with Glycol Chitosan for Photothermal Cancer Therapy.
    Jo S; Sun IC; Yun WS; Kim J; Lim DK; Ahn CH; Kim K
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of dose point kernel rescaling methods for nanoscale dose estimation around gold nanoparticles using Geant4 Monte Carlo simulations.
    Jayarathna S; Manohar N; Ahmed MF; Krishnan S; Cho SH
    Sci Rep; 2019 Mar; 9(1):3583. PubMed ID: 30837578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A detailed Monte Carlo evaluation of
    Gray T; Bassiri N; David S; Patel DY; Stathakis S; Kirby N; Mayer KM
    Phys Med Biol; 2020 Jul; 65(13):135007. PubMed ID: 32434159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy II. Cellular dose enhancement within macroscopic tumor models.
    Martinov MP; Fletcher EM; Thomson RM
    Med Phys; 2023 Sep; 50(9):5842-5852. PubMed ID: 37246723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of gold nanoparticles distribution radius on photothermal therapy efficacy.
    Kim D; Paik J; Kim H
    Sci Rep; 2023 Jul; 13(1):12135. PubMed ID: 37495612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in-silico method to predict and quantify the effect of gold nanoparticles in X-ray imaging.
    Rouchota M; Loudos G; Kagadis GC
    Phys Med; 2021 Sep; 89():160-168. PubMed ID: 34380106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photothermal therapeutic effect of PEGylated gold nano-semicubes in chemically-induced skin cancer in mice.
    Abo-Elfadl MT; Gamal-Eldeen AM; Elshafey MM; Abdalla GM; Ali SS; Ali MR; Zawrah MF
    J Photochem Photobiol B; 2016 Nov; 164():21-29. PubMed ID: 27636008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microdosimetric and radiobiological effects of gold nanoparticles at therapeutic radiation energies.
    Gray TM; David S; Bassiri N; Patel DY; Kirby N; Mayer KM
    Int J Radiat Biol; 2023; 99(2):308-317. PubMed ID: 35709481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gold nanospheres enhanced photothermal therapy in a rat model.
    Xing L; Chen B; Li D; Wu W; Ying Z
    Lasers Surg Med; 2018 Jan; ():. PubMed ID: 29356033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of gold nanoparticles on radiation doses in tumor treatment: a Monte Carlo study.
    Al-Musywel HA; Laref A
    Lasers Med Sci; 2017 Dec; 32(9):2073-2080. PubMed ID: 28948388
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing deep tissues with laser-induced thermotherapy using near-infrared light.
    Lopes A; Gomes R; Castiñeras M; Coelho JMP; Santos JP; Vieira P
    Lasers Med Sci; 2020 Feb; 35(1):43-49. PubMed ID: 31098938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.