These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 38750502)
1. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Zhang C; Shi Y; Liu C; Sudesh SM; Hu Z; Li P; Liu Q; Ma Y; Shi A; Cai H Cardiovasc Diabetol; 2024 May; 23(1):169. PubMed ID: 38750502 [TBL] [Abstract][Full Text] [Related]
2. Protection by dimethyl fumarate against diabetic cardiomyopathy in type 1 diabetic mice likely via activation of nuclear factor erythroid-2 related factor 2. Hu X; Rajesh M; Zhang J; Zhou S; Wang S; Sun J; Tan Y; Zheng Y; Cai L Toxicol Lett; 2018 May; 287():131-141. PubMed ID: 29408448 [TBL] [Abstract][Full Text] [Related]
3. SIRT6‑specific inhibitor OSS‑128167 exacerbates diabetic cardiomyopathy by aggravating inflammation and oxidative stress. Huang Y; Zhang J; Xu D; Peng Y; Jin Y; Zhang L Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33760202 [TBL] [Abstract][Full Text] [Related]
4. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Frati G; Schirone L; Chimenti I; Yee D; Biondi-Zoccai G; Volpe M; Sciarretta S Cardiovasc Res; 2017 Mar; 113(4):378-388. PubMed ID: 28395009 [TBL] [Abstract][Full Text] [Related]
5. H3 Relaxin Protects Against Myocardial Injury in Experimental Diabetic Cardiomyopathy by Inhibiting Myocardial Apoptosis, Fibrosis and Inflammation. Zhang X; Pan L; Yang K; Fu Y; Liu Y; Chi J; Zhang X; Hong S; Ma X; Yin X Cell Physiol Biochem; 2017; 43(4):1311-1324. PubMed ID: 28992627 [TBL] [Abstract][Full Text] [Related]
6. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice. Huang R; Shi Z; Chen L; Zhang Y; Li J; An Y Eur J Pharmacol; 2017 Nov; 814():151-160. PubMed ID: 28826911 [TBL] [Abstract][Full Text] [Related]
7. Molecular Basis of Cardiomyopathies in Type 2 Diabetes. Giardinelli S; Meliota G; Mentino D; D'Amato G; Faienza MF Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125850 [TBL] [Abstract][Full Text] [Related]
8. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Li C; Zhang J; Xue M; Li X; Han F; Liu X; Xu L; Lu Y; Cheng Y; Li T; Yu X; Sun B; Chen L Cardiovasc Diabetol; 2019 Feb; 18(1):15. PubMed ID: 30710997 [TBL] [Abstract][Full Text] [Related]
9. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953 [TBL] [Abstract][Full Text] [Related]
10. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. Monji A; Mitsui T; Bando YK; Aoyama M; Shigeta T; Murohara T Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H295-304. PubMed ID: 23709595 [TBL] [Abstract][Full Text] [Related]
11. Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice. Fang Q; Wang J; Wang L; Zhang Y; Yin H; Li Y; Tong C; Liang G; Zheng C Toxicol Appl Pharmacol; 2015 Oct; 288(2):179-91. PubMed ID: 26206226 [TBL] [Abstract][Full Text] [Related]
12. A review of fibroblast growth factor 21 in diabetic cardiomyopathy. Zhang X; Yang L; Xu X; Tang F; Yi P; Qiu B; Hao Y Heart Fail Rev; 2019 Nov; 24(6):1005-1017. PubMed ID: 31175491 [TBL] [Abstract][Full Text] [Related]
13. Exercise Regulates MicroRNAs to Preserve Coronary and Cardiac Function in the Diabetic Heart. Lew JK; Pearson JT; Saw E; Tsuchimochi H; Wei M; Ghosh N; Du CK; Zhan DY; Jin M; Umetani K; Shirai M; Katare R; Schwenke DO Circ Res; 2020 Nov; 127(11):1384-1400. PubMed ID: 32907486 [TBL] [Abstract][Full Text] [Related]
14. Diabetic Cardiomyopathy: From Mechanism to Management in a Nutshell. Khan S; Ahmad SS; Kamal MA Endocr Metab Immune Disord Drug Targets; 2021; 21(2):268-281. PubMed ID: 32735531 [TBL] [Abstract][Full Text] [Related]
15. EGFR inhibition protects cardiac damage and remodeling through attenuating oxidative stress in STZ-induced diabetic mouse model. Liang D; Zhong P; Hu J; Lin F; Qian Y; Xu Z; Wang J; Zeng C; Li X; Liang G J Mol Cell Cardiol; 2015 May; 82():63-74. PubMed ID: 25758431 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Dhar A; Venkadakrishnan J; Roy U; Vedam S; Lalwani N; Ramos KS; Pandita TK; Bhat A Ther Adv Cardiovasc Dis; 2023; 17():17539447231210170. PubMed ID: 38069578 [TBL] [Abstract][Full Text] [Related]
17. Insight into the Pro-inflammatory and Profibrotic Role of Macrophage in Heart Failure With Preserved Ejection Fraction. Shen JL; Xie XJ J Cardiovasc Pharmacol; 2020 Sep; 76(3):276-285. PubMed ID: 32501838 [TBL] [Abstract][Full Text] [Related]
18. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. Rajesh M; Mukhopadhyay P; Bátkai S; Patel V; Saito K; Matsumoto S; Kashiwaya Y; Horváth B; Mukhopadhyay B; Becker L; Haskó G; Liaudet L; Wink DA; Veves A; Mechoulam R; Pacher P J Am Coll Cardiol; 2010 Dec; 56(25):2115-25. PubMed ID: 21144973 [TBL] [Abstract][Full Text] [Related]
19. The role and therapeutic potential of macrophages in the pathogenesis of diabetic cardiomyopathy. Zhang S; Zhu X; Chen Y; Wen Z; Shi P; Ni Q Front Immunol; 2024; 15():1393392. PubMed ID: 38774880 [TBL] [Abstract][Full Text] [Related]
20. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy. Palomer X; Aguilar-Recarte D; García R; Nistal JF; Vázquez-Carrera M Trends Mol Med; 2021 Jun; 27(6):554-571. PubMed ID: 33839024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]