BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 38750509)

  • 1. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases.
    Dai Y; Guo Y; Tang W; Chen D; Xue L; Chen Y; Guo Y; Wei S; Wu M; Dai J; Wang S
    J Nanobiotechnology; 2024 May; 22(1):252. PubMed ID: 38750509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases.
    An Z; Yan J; Zhang Y; Pei R
    J Mater Chem B; 2020 Oct; 8(38):8748-8767. PubMed ID: 32869050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders.
    Akhtar MJ; Ahamed M; Alhadlaq HA; Alshamsan A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):802-813. PubMed ID: 28115205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies.
    Dhiman SB; Kamat JP; Naik DB
    Chem Biol Interact; 2009 Dec; 182(2-3):119-27. PubMed ID: 19665455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HTHQ (1-O-hexyl-2,3,5-trimethylhydroquinone), an anti-lipid-peroxidative compound: its chemical and biochemical characterizations.
    Hino T; Kawanishi S; Yasui H; Oka S; Sakurai H
    Biochim Biophys Acta; 1998 Sep; 1425(1):47-60. PubMed ID: 9813237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.
    Bhushan B; Nandhagopal S; Rajesh Kannan R; Gopinath P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():375-86. PubMed ID: 27388966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical scavenging and antioxidant activity of plant flavonoids.
    Kandaswami C; Middleton E
    Adv Exp Med Biol; 1994; 366():351-76. PubMed ID: 7771265
    [No Abstract]   [Full Text] [Related]  

  • 8. Trifluoroacetylated tyrosine-rich D-tetrapeptides have potent antioxidant activity.
    Sandomenico A; Severino V; Apone F; De Lucia A; Caporale A; Doti N; Russo A; Russo R; Rega C; Del Giacco T; Falcigno L; Ruvo M; Chambery A
    Peptides; 2017 Mar; 89():50-59. PubMed ID: 28130120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status.
    Pisoschi AM; Pop A; Iordache F; Stanca L; Predoi G; Serban AI
    Eur J Med Chem; 2021 Jan; 209():112891. PubMed ID: 33032084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin: action as antioxidant and potential applications in human disease and aging.
    Bonnefont-Rousselot D; Collin F
    Toxicology; 2010 Nov; 278(1):55-67. PubMed ID: 20417677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease.
    Bao X; Zhao J; Sun J; Hu M; Yang X
    ACS Nano; 2018 Sep; 12(9):8882-8892. PubMed ID: 30028940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relevant targets of anti-oxidative stress: a review.
    Qi JH; Dong FX
    J Drug Target; 2021 Aug; 29(7):677-686. PubMed ID: 33401976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions.
    Mahapatra C; Singh RK; Lee JH; Jung J; Hyun JK; Kim HW
    Acta Biomater; 2017 Mar; 50():142-153. PubMed ID: 27940193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterial-based reactive oxygen species scavengers for osteoarthritis therapy.
    Zhang S; Wang L; Kang Y; Wu J; Zhang Z
    Acta Biomater; 2023 May; 162():1-19. PubMed ID: 36967052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-active radical scavenging nanomaterials.
    Karakoti A; Singh S; Dowding JM; Seal S; Self WT
    Chem Soc Rev; 2010 Nov; 39(11):4422-32. PubMed ID: 20717560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening methods for antioxidants-a review.
    Kaur IP; Geetha T
    Mini Rev Med Chem; 2006 Mar; 6(3):305-12. PubMed ID: 16515469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au-Pt nanocomposites.
    Xiong B; Xu R; Zhou R; He Y; Yeung ES
    Talanta; 2014 Mar; 120():262-7. PubMed ID: 24468368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress.
    Lugo-Huitrón R; Blanco-Ayala T; Ugalde-Muñiz P; Carrillo-Mora P; Pedraza-Chaverrí J; Silva-Adaya D; Maldonado PD; Torres I; Pinzón E; Ortiz-Islas E; López T; García E; Pineda B; Torres-Ramos M; Santamaría A; La Cruz VP
    Neurotoxicol Teratol; 2011; 33(5):538-47. PubMed ID: 21763768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting mitochondria.
    Hoye AT; Davoren JE; Wipf P; Fink MP; Kagan VE
    Acc Chem Res; 2008 Jan; 41(1):87-97. PubMed ID: 18193822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.