BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 38750509)

  • 21. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?
    Touyz RM
    Hypertension; 2004 Sep; 44(3):248-52. PubMed ID: 15262903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy.
    Thi PL; Lee Y; Tran DL; Thi TTH; Kang JI; Park KM; Park KD
    Acta Biomater; 2020 Feb; 103():142-152. PubMed ID: 31846801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free radical scavenging activity of the peptide from the Alcalase hydrolysate of the edible aquacultural seahorse (Hippocampus abdominalis).
    Kim HS; Kim SY; Fernando IPS; Sanjeewa KKA; Wang L; Lee SH; Ko SC; Kang MC; Jayawardena TU; Jeon YJ
    J Food Biochem; 2019 Jul; 43(7):e12833. PubMed ID: 31353700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antioxidant Peptides from the Protein Hydrolysate of Monkfish (
    Hu XM; Wang YM; Zhao YQ; Chi CF; Wang B
    Mar Drugs; 2020 Mar; 18(3):. PubMed ID: 32164197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione.
    Čapek J; Roušar T
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress.
    Song G; Zhao M; Chen H; Lenahan C; Zhou X; Ou Y; He Y
    Oxid Med Cell Longev; 2021; 2021():8857486. PubMed ID: 33815664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resources and biological activities of natural polyphenols.
    Li AN; Li S; Zhang YJ; Xu XR; Chen YM; Li HB
    Nutrients; 2014 Dec; 6(12):6020-47. PubMed ID: 25533011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products?
    Niki E
    FEBS Lett; 2012 Nov; 586(21):3767-70. PubMed ID: 23022561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine.
    Xu Z; Chen L; Luo Y; Wei YM; Wu NY; Luo LF; Wei YB; Huang J
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38865988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application and design considerations of ROS-based nanomaterials in diabetic kidney disease.
    Huang Q; Tang J; Ding Y; Li F
    Front Endocrinol (Lausanne); 2024; 15():1351497. PubMed ID: 38742196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in reactive oxygen species scavenging nanomaterials for wound healing.
    Joorabloo A; Liu T
    Exploration (Beijing); 2024 Jun; 4(3):20230066. PubMed ID: 38939866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging.
    Slemmer JE; Shacka JJ; Sweeney MI; Weber JT
    Curr Med Chem; 2008; 15(4):404-14. PubMed ID: 18288995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.
    Jin J; Li Y; Zhang X; Chen T; Wang Y; Wang Z
    Adv Exp Med Biol; 2016; 923():57-62. PubMed ID: 27526125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.
    Hamasaki T; Harada G; Nakamichi N; Kabayama S; Teruya K; Fugetsu B; Gong W; Sakata I; Shirahata S
    PLoS One; 2017; 12(2):e0171192. PubMed ID: 28182635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced antioxidant effect of caffeic acid phenethyl ester and Trolox in combination against radiation induced-oxidative stress.
    Bai H; Liu R; Chen HL; Zhang W; Wang X; Zhang XD; Li WL; Hai CX
    Chem Biol Interact; 2014 Jan; 207():7-15. PubMed ID: 24211618
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidants and prevention of chronic disease.
    Willcox JK; Ash SL; Catignani GL
    Crit Rev Food Sci Nutr; 2004; 44(4):275-95. PubMed ID: 15462130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Antioxidants to slow aging, facts and perspectives].
    Bonnefoy M; Drai J; Kostka T
    Presse Med; 2002 Jul; 31(25):1174-84. PubMed ID: 12192730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entacapone is an Antioxidant More Potent than Vitamin C and Vitamin E for Scavenging of Hypochlorous Acid and Peroxynitrite, and the Inhibition of Oxidative Stress-Induced Cell Death.
    Chen AY; Lü JM; Yao Q; Chen C
    Med Sci Monit; 2016 Mar; 22():687-96. PubMed ID: 26927838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive oxygen species-activated nanomaterials as theranostic agents.
    Kim KS; Lee D; Song CG; Kang PM
    Nanomedicine (Lond); 2015; 10(17):2709-23. PubMed ID: 26328770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.