BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 38750509)

  • 41. Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species.
    Kim SH; Kang KA; Zhang R; Piao MJ; Ko DO; Wang ZH; Chae SW; Kang SS; Lee KH; Kang HK; Kang HW; Hyun JW
    Acta Pharmacol Sin; 2008 Nov; 29(11):1319-26. PubMed ID: 18954526
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protective Effects of Novel Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler Against Oxidative Stress in Chang Liver Cells in Vitro and in a Zebrafish Model In Vivo.
    Ding Y; Ko SC; Moon SH; Lee SH
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31635129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-ROS-scavenging and dual-lingering nanozyme-based eye drops alleviate dry eye disease.
    Zhang W; Zhao M; Chu D; Chen H; Cui B; Ning Q; Wang X; Li Z; Cao S; Li J
    J Nanobiotechnology; 2024 May; 22(1):229. PubMed ID: 38720321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds.
    Becker K; Schroecksnadel S; Gostner J; Zaknun C; Schennach H; Uberall F; Fuchs D
    Phytomedicine; 2014 Jan; 21(2):164-71. PubMed ID: 24041614
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 2-Styrylchromones: novel strong scavengers of reactive oxygen and nitrogen species.
    Gomes A; Fernandes E; Silva AM; Santos CM; Pinto DC; Cavaleiro JA; Lima JL
    Bioorg Med Chem; 2007 Sep; 15(18):6027-36. PubMed ID: 17624791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries.
    Yoshitomi T; Nagasaki Y
    Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress.
    Forbot N; Bolibok P; Wiśniewski M; Roszek K
    Mini Rev Med Chem; 2020; 20(4):294-307. PubMed ID: 31738152
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 14-aminotetradecanoic acid exhibits antioxidant activity and ameliorates xenobiotics-induced cytotoxicity.
    Srivastava A; Rao LJ; Shivanandappa T
    Mol Cell Biochem; 2012 May; 364(1-2):1-9. PubMed ID: 22198290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In Vitro and In Vivo Antioxidant Activity of
    Barreto SMAG; Cadavid COM; Moura RAO; Silva GMM; Araújo SVF; Silva Filho JAAD; Rocha HAO; Oliveira RP; Giordani RB; Ferrari M
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33053674
    [No Abstract]   [Full Text] [Related]  

  • 50. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis.
    Zheng X; Zhao J; Wang S; Hu L
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364064
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protective role of new nitrogen compounds on ROS/RNS-mediated damage to PC12 cells.
    Silva JP; Proença F; Coutinho OP
    Free Radic Res; 2008 Jan; 42(1):57-69. PubMed ID: 18324524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanocarrier-mediated antioxidant delivery for liver diseases.
    Li S; Li H; Xu X; Saw PE; Zhang L
    Theranostics; 2020; 10(3):1262-1280. PubMed ID: 31938064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine.
    He YY; Häder DP
    J Photochem Photobiol B; 2002 Mar; 66(2):115-24. PubMed ID: 11897511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of Free Radical Scavenging Activity of Dimethylglycine Sodium Salt and Its Role in Providing Protection against Lipopolysaccharide-Induced Oxidative Stress in Mice.
    Bai K; Xu W; Zhang J; Kou T; Niu Y; Wan X; Zhang L; Wang C; Wang T
    PLoS One; 2016; 11(5):e0155393. PubMed ID: 27171376
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Role of AOPP in Age-Related Bone Loss and the Potential Benefits of Berry Anthocyanins.
    Melough MM; Sun X; Chun OK
    Nutrients; 2017 Jul; 9(7):. PubMed ID: 28737666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E.
    Butterfield DA; Koppal T; Howard B; Subramaniam R; Hall N; Hensley K; Yatin S; Allen K; Aksenov M; Aksenova M; Carney J
    Ann N Y Acad Sci; 1998 Nov; 854():448-62. PubMed ID: 9928452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Scavenging of reactive oxygen species by a novel glucurinated flavonoid antioxidant isolated and purified from spinach.
    Bergman M; Perelman A; Dubinsky Z; Grossman S
    Phytochemistry; 2003 Mar; 62(5):753-62. PubMed ID: 12620328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developing ROS scavenging agents for pharmacological purposes: recent advances in design of manganese-based complexes with anti-inflammatory and anti- nociceptive activity.
    Bani D; Bencini A
    Curr Med Chem; 2012; 19(26):4431-44. PubMed ID: 22830332
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases.
    Liu T; Xiao B; Xiang F; Tan J; Chen Z; Zhang X; Wu C; Mao Z; Luo G; Chen X; Deng J
    Nat Commun; 2020 Jun; 11(1):2788. PubMed ID: 32493916
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology.
    Qiu Y; Wang Z; Owens AC; Kulaots I; Chen Y; Kane AB; Hurt RH
    Nanoscale; 2014 Oct; 6(20):11744-55. PubMed ID: 25157875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.