These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38750519)

  • 21. Geometrical versus Random β-TCP Scaffolds: Exploring the Effects on Schwann Cell Growth and Behavior.
    Sweet L; Kang Y; Czisch C; Witek L; Shi Y; Smay J; Plant GW; Yang Y
    PLoS One; 2015; 10(10):e0139820. PubMed ID: 26444999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function.
    Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C
    Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect.
    Peng Z; Wang C; Liu C; Xu H; Wang Y; Liu Y; Hu Y; Li J; Jin Y; Jiang C; Liu L; Guo J; Zhu L
    J Mater Chem B; 2021 Jul; 9(28):5698-5710. PubMed ID: 34223587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment.
    Liu Z; Wang T; Zhang L; Luo Y; Zhao J; Chen Y; Wang Y; Cao W; Zhao X; Lu B; Chen F; Zhou Z; Zheng L
    Adv Healthc Mater; 2024 Jun; 13(15):e2304158. PubMed ID: 38319101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration.
    Liu W; Bi W; Sun Y; Wang L; Yu X; Cheng R; Yu Y; Cui W
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110670. PubMed ID: 32204098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration.
    Desai N; Pande S; Vora LK; Kommineni N
    ACS Appl Bio Mater; 2024 Jul; 7(7):4270-4292. PubMed ID: 38950103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration.
    Zheng Y; Yang Y; Deng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():770-782. PubMed ID: 30889752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Single-Atomic Iron-Catalyst-Integrated 3D-Printed Bioscaffolds for Osteosarcoma Destruction with Antibacterial and Bone Defect Regeneration Bioactivity.
    Wang L; Yang Q; Huo M; Lu D; Gao Y; Chen Y; Xu H
    Adv Mater; 2021 Aug; 33(31):e2100150. PubMed ID: 34146359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: in vitro and in vivo studies.
    Baykan E; Koc A; Eser Elcin A; Murat Elcin Y
    Biointerphases; 2014 Jun; 9(2):029011. PubMed ID: 24985215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Segmental composite porous scaffolds with either osteogenesis or anti-bone resorption properties tested in a rabbit ulna defect model.
    Chen S; Lau P; Lei M; Peng J; Tang T; Wang X; Qin L; Kumta SM
    J Tissue Eng Regen Med; 2017 Jan; 11(1):34-43. PubMed ID: 24668843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects.
    Helal MH; Hendawy HD; Gaber RA; Helal NR; Aboushelib MN
    J Prosthet Dent; 2019 Jan; 121(1):118-123. PubMed ID: 29961633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma.
    Yang F; Lu J; Ke Q; Peng X; Guo Y; Xie X
    Sci Rep; 2018 May; 8(1):7345. PubMed ID: 29743489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia.
    Han SH; Cha M; Jin YZ; Lee KM; Lee JH
    Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute promotes bone regeneration by moderating oxidative stress in osteoporotic bone defect.
    Huang L; Zhang S; Bian M; Xiang X; Xiao L; Wang J; Lu S; Chen W; Zhang C; Mo G; Jiang L; Li Y; Zhang J
    Acta Biomater; 2024 May; 180():82-103. PubMed ID: 38621599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis.
    Sadowska JM; Wei F; Guo J; Guillem-Marti J; Lin Z; Ginebra MP; Xiao Y
    Acta Biomater; 2019 Sep; 96():605-618. PubMed ID: 31269454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.