BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38750569)

  • 1. Construction of an enzyme-constrained metabolic network model for Myceliophthora thermophila using machine learning-based k
    Wang Y; Mao Z; Dong J; Zhang P; Gao Q; Liu D; Tian C; Ma H
    Microb Cell Fact; 2024 May; 23(1):138. PubMed ID: 38750569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila.
    Liu D; Xu Z; Li J; Liu Q; Yuan Q; Guo Y; Ma H; Tian C
    Biotechnol Bioeng; 2022 Jul; 119(7):1926-1937. PubMed ID: 35257374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and Analysis of an Enzyme-Constrained Metabolic Model of
    Niu J; Mao Z; Mao Y; Wu K; Shi Z; Yuan Q; Cai J; Ma H
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models.
    Mao Z; Niu J; Zhao J; Huang Y; Wu K; Yun L; Guan J; Yuan Q; Liao X; Wang Z; Ma H
    Synth Syst Biotechnol; 2024 Sep; 9(3):494-502. PubMed ID: 38651096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct production of commodity chemicals from lignocellulose using Myceliophthora thermophila.
    Li J; Lin L; Sun T; Xu J; Ji J; Liu Q; Tian C
    Metab Eng; 2020 Sep; 61():416-426. PubMed ID: 31078793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the thermophilic fungus Myceliophthora thermophila into glucoamylase hyperproduction system via the metabolic engineering using improved AsCas12a variants.
    Zhu Z; Zhang M; Liu D; Liu D; Sun T; Yang Y; Dong J; Zhai H; Sun W; Liu Q; Tian C
    Microb Cell Fact; 2023 Aug; 22(1):150. PubMed ID: 37568174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential.
    Singh B
    Crit Rev Biotechnol; 2016; 36(1):59-69. PubMed ID: 25025273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of enzyme-constrained genome-scale model through metabolic engineering of anaerobic co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae.
    Sjöberg G; Reķēna A; Fornstad M; Lahtvee PJ; van Maris AJA
    Metab Eng; 2024 Mar; 82():49-59. PubMed ID: 38309619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 11. ecBSU1: A Genome-Scale Enzyme-Constrained Model of
    Wu K; Mao Z; Mao Y; Niu J; Cai J; Yuan Q; Yun L; Liao X; Wang Z; Ma H
    Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth kinetics of Myceliophthora thermophila M.7·7 in solid-state cultivation.
    Dos Santos Gomes AC; Casciatori FP; Gomes E; da Costa Carreira Nunes C; Moretti MMS; Thoméo JC
    J Appl Microbiol; 2021 Jan; 130(1):90-99. PubMed ID: 32640074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional analysis of Myceliophthora thermophila on soluble starch and role of regulator AmyR on polysaccharide degradation.
    Xu G; Li J; Liu Q; Sun W; Jiang M; Tian C
    Bioresour Technol; 2018 Oct; 265():558-562. PubMed ID: 29843921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila.
    Kolbusz MA; Di Falco M; Ishmael N; Marqueteau S; Moisan MC; Baptista CDS; Powlowski J; Tsang A
    Fungal Genet Biol; 2014 Nov; 72():10-20. PubMed ID: 24881579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of metabolic models with multiple constraints: a review].
    Yang X; Zhang P; Mao Z; Zhao X; Wang R; Cai J; Wang Z; Ma H
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):531-545. PubMed ID: 35234380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of genetic tools for Myceliophthora thermophila.
    Xu J; Li J; Lin L; Liu Q; Sun W; Huang B; Tian C
    BMC Biotechnol; 2015 May; 15():35. PubMed ID: 26013561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions.
    Zhou J; Zhuang Y; Xia J
    Microb Cell Fact; 2021 Jun; 20(1):125. PubMed ID: 34193117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica.
    van den Brink J; van Muiswinkel GC; Theelen B; Hinz SW; de Vries RP
    Appl Environ Microbiol; 2013 Feb; 79(4):1316-24. PubMed ID: 23241981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.