BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38750680)

  • 21. Enhanced interferon signaling pathway in oral cancer revealed by quantitative proteome analysis of microdissected specimens using 16O/18O labeling and integrated two-dimensional LC-ESI-MALDI tandem MS.
    Chi LM; Lee CW; Chang KP; Hao SP; Lee HM; Liang Y; Hsueh C; Yu CJ; Lee IN; Chang YJ; Lee SY; Yeh YM; Chang YS; Chien KY; Yu JS
    Mol Cell Proteomics; 2009 Jul; 8(7):1453-74. PubMed ID: 19297561
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histone Lactylation Is Involved in Mouse Oocyte Maturation and Embryo Development.
    Yang D; Zheng H; Lu W; Tian X; Sun Y; Peng H
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lactylproteome analysis indicates histone H4K12 lactylation as a novel biomarker in triple-negative breast cancer.
    Cui Z; Li Y; Lin Y; Zheng C; Luo L; Hu D; Chen Y; Xiao Z; Sun Y
    Front Endocrinol (Lausanne); 2024; 15():1328679. PubMed ID: 38779451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global profiling of lysine lactylation in human lungs.
    Yang YH; Wang QC; Kong J; Yang JT; Liu JF
    Proteomics; 2023 Aug; 23(15):e2200437. PubMed ID: 37170646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of newly identified lysine lactylation in cancer.
    Gao X; Pang C; Fan Z; Wang Y; Duan Y; Zhan H
    Cancer Lett; 2024 Apr; 587():216680. PubMed ID: 38346584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma?
    Grimm M; Cetindis M; Lehmann M; Biegner T; Munz A; Teriete P; Kraut W; Reinert S
    J Transl Med; 2014 Jul; 12():208. PubMed ID: 25048361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Malic Enzyme 1 Is Associated with Tumor Budding in Oral Squamous Cell Carcinomas.
    Nakashima C; Kirita T; Yamamoto K; Mori S; Luo Y; Sasaki T; Fujii K; Ohmori H; Kawahara I; Mori T; Goto K; Kishi S; Fujiwara-Tani R; Kuniyasu H
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysine lactylation regulates metabolic pathways and biofilm formation in
    Li Z; Gong T; Wu Q; Zhang Y; Zheng X; Li Y; Ren B; Peng X; Zhou X
    Sci Signal; 2023 Sep; 16(801):eadg1849. PubMed ID: 37669396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ubiquitous protein lactylation in health and diseases.
    Wang J; Wang Z; Wang Q; Li X; Guo Y
    Cell Mol Biol Lett; 2024 Feb; 29(1):23. PubMed ID: 38317138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive Analysis of Lysine Lactylation in Rice (
    Meng X; Baine JM; Yan T; Wang S
    J Agric Food Chem; 2021 Jul; 69(29):8287-8297. PubMed ID: 34264677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma.
    Chen YW; Kao SY; Wang HJ; Yang MH
    Cancer; 2013 Dec; 119(24):4259-67. PubMed ID: 24301303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acidotic and hypoxic tumor microenvironment induces changes to histone acetylation and methylation in oral squamous cell carcinoma.
    Khan T; Iftikhar F; Akhlaq R; Musharraf SG; Ali A
    Biomed Chromatogr; 2023 Jun; 37(6):e5616. PubMed ID: 36882186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β‑catenin pathway in oral squamous cell carcinoma.
    Chen F; Qi S; Zhang X; Wu J; Yang X; Wang R
    Int J Oncol; 2019 Apr; 54(4):1183-1194. PubMed ID: 30720068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities.
    Zhang K; Li L; Zhu M; Wang G; Xie J; Zhao Y; Fan E; Xu L; Li E
    J Proteomics; 2015 Jan; 112():180-9. PubMed ID: 25234497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silencing PFKP inhibits starvation-induced autophagy, glycolysis, and epithelial mesenchymal transition in oral squamous cell carcinoma.
    Chen G; Liu H; Zhang Y; Liang J; Zhu Y; Zhang M; Yu D; Wang C; Hou J
    Exp Cell Res; 2018 Sep; 370(1):46-57. PubMed ID: 29894707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species produced by the knockdown of manganese-superoxide dismutase up-regulate hypoxia-inducible factor-1alpha expression in oral squamous cell carcinoma cells.
    Sasabe E; Yang Z; Ohno S; Yamamoto T
    Free Radic Biol Med; 2010 May; 48(10):1321-9. PubMed ID: 20188165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic Profiling of Paired Interstitial Fluids Reveals Dysregulated Pathways and Salivary NID1 as a Biomarker of Oral Cavity Squamous Cell Carcinoma.
    Hsu CW; Chang KP; Huang Y; Liu HP; Hsueh PC; Gu PW; Yen WC; Wu CC
    Mol Cell Proteomics; 2019 Oct; 18(10):1939-1949. PubMed ID: 31315917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hypoxic tumor microenvironment regulates invasion of aggressive oral carcinoma cells.
    Teppo S; Sundquist E; Vered M; Holappa H; Parkkisenniemi J; Rinaldi T; Lehenkari P; Grenman R; Dayan D; Risteli J; Salo T; Nyberg P
    Exp Cell Res; 2013 Feb; 319(4):376-89. PubMed ID: 23262025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive review of histone lactylation: Structure, function, and therapeutic targets.
    Xu K; Zhang K; Wang Y; Gu Y
    Biochem Pharmacol; 2024 Jul; 225():116331. PubMed ID: 38821374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global profiling of protein lactylation in Caenorhabditis elegans.
    Ding T; Yang YH; Wang QC; Wu Y; Han R; Zhang XT; Kong J; Yang JT; Liu JF
    Proteomics; 2024 Jan; 24(1-2):e2300185. PubMed ID: 37847886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.