BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38750699)

  • 1. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor.
    Aloss K; Hamar P
    Biochim Biophys Acta Rev Cancer; 2024 Jul; 1879(4):189109. PubMed ID: 38750699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
    Li L; ten Hagen TL; Bolkestein M; Gasselhuber A; Yatvin J; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA
    J Control Release; 2013 Apr; 167(2):130-7. PubMed ID: 23391444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy.
    Dunne M; Regenold M; Allen C
    Adv Drug Deliv Rev; 2020; 163-164():98-124. PubMed ID: 32681862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers.
    Fang J; Islam W; Maeda H
    Adv Drug Deliv Rev; 2020; 157():142-160. PubMed ID: 32553783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.
    Kalyane D; Raval N; Maheshwari R; Tambe V; Kalia K; Tekade RK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1252-1276. PubMed ID: 30813007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focused Ultrasound Hyperthermia Mediated Drug Delivery Using Thermosensitive Liposomes and Visualized With
    Santos MA; Goertz DE; Hynynen K
    Theranostics; 2017; 7(10):2718-2731. PubMed ID: 28819458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors and mechanism of "EPR" effect and the enhanced antitumor effects of macromolecular drugs including SMANCS.
    Fang J; Sawa T; Maeda H
    Adv Exp Med Biol; 2003; 519():29-49. PubMed ID: 12675206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
    Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W
    Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer.
    Stephen ZR; Zhang M
    Adv Healthc Mater; 2021 Jan; 10(2):e2001415. PubMed ID: 33236511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications.
    Duan L; Yang L; Jin J; Yang F; Liu D; Hu K; Wang Q; Yue Y; Gu N
    Theranostics; 2020; 10(2):462-483. PubMed ID: 31903132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPR: Evidence and fallacy.
    Nichols JW; Bae YH
    J Control Release; 2014 Sep; 190():451-64. PubMed ID: 24794900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.
    Kinoshita R; Ishima Y; Chuang VTG; Nakamura H; Fang J; Watanabe H; Shimizu T; Okuhira K; Ishida T; Maeda H; Otagiri M; Maruyama T
    Biomaterials; 2017 Sep; 140():162-169. PubMed ID: 28651144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperthermia and smart drug delivery systems for solid tumor therapy.
    Seynhaeve ALB; Amin M; Haemmerich D; van Rhoon GC; Ten Hagen TLM
    Adv Drug Deliv Rev; 2020; 163-164():125-144. PubMed ID: 32092379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors.
    Miao L; Lin CM; Huang L
    J Control Release; 2015 Dec; 219():192-204. PubMed ID: 26277065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folate-receptor-targeted laser-activable poly(lactide-
    Liu F; Chen Y; Li Y; Guo Y; Cao Y; Li P; Wang Z; Gong Y; Ran H
    Int J Nanomedicine; 2018; 13():5139-5158. PubMed ID: 30233177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.
    Maeda H; Nakamura H; Fang J
    Adv Drug Deliv Rev; 2013 Jan; 65(1):71-9. PubMed ID: 23088862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor microenvironment and nanotherapeutics: intruding the tumor fort.
    Ravi Kiran AVVV; Kusuma Kumari G; Krishnamurthy PT; Khaydarov RR
    Biomater Sci; 2021 Nov; 9(23):7667-7704. PubMed ID: 34673853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.