BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38750725)

  • 1. Automatic detection of midfacial fractures in facial bone CT images using deep learning-based object detection models.
    Morita D; Kawarazaki A; Soufi M; Otake Y; Sato Y; Numajiri T
    J Stomatol Oral Maxillofac Surg; 2024 May; ():101914. PubMed ID: 38750725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for Midfacial Fracture Detection in CT Images.
    Warin K; Vicharueang S; Jantana P; Limprasert W; Thanathornwong B; Suebnukarn S
    Stud Health Technol Inform; 2024 Jan; 310():1497-1498. PubMed ID: 38269714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligence Model Trained with Sparse Data to Detect Facial and Cranial Bone Fractures from Head CT.
    Wang HC; Wang SC; Yan JL; Ko LW
    J Digit Imaging; 2023 Aug; 36(4):1408-1418. PubMed ID: 37095310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning based real-time tourist spots detection and recognition mechanism.
    Chen YC; Yu KM; Kao TH; Hsieh HL
    Sci Prog; 2021 Sep; 104(3_suppl):368504211044228. PubMed ID: 34668799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated fracture screening using an object detection algorithm on whole-body trauma computed tomography.
    Inoue T; Maki S; Furuya T; Mikami Y; Mizutani M; Takada I; Okimatsu S; Yunde A; Miura M; Shiratani Y; Nagashima Y; Maruyama J; Shiga Y; Inage K; Orita S; Eguchi Y; Ohtori S
    Sci Rep; 2022 Oct; 12(1):16549. PubMed ID: 36192521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance.
    Meng XH; Wu DJ; Wang Z; Ma XL; Dong XM; Liu AE; Chen L
    Skeletal Radiol; 2021 Sep; 50(9):1821-1828. PubMed ID: 33599801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Detection and Classification of Modic Changes in MRI Images Using Deep Learning: Intelligent Assisted Diagnosis System.
    Liu G; Wang L; You SN; Wang Z; Zhu S; Chen C; Ma XL; Yang L; Zhang S; Yang Q
    Orthop Surg; 2024 Jan; 16(1):196-206. PubMed ID: 37933461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types.
    Anderson PG; Baum GL; Keathley N; Sicular S; Venkatesh S; Sharma A; Daluiski A; Potter H; Hotchkiss R; Lindsey RV; Jones RM
    Clin Orthop Relat Res; 2023 Mar; 481(3):580-588. PubMed ID: 36083847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Detection of Mandibular Fractures in Panoramic Radiographs Using Deep Learning.
    Son DM; Yoon YA; Kwon HJ; An CH; Lee SH
    Diagnostics (Basel); 2021 May; 11(6):. PubMed ID: 34067462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Convolutional Neural Networks for Automatic Detection of Orbital Blowout Fractures.
    Li L; Song X; Guo Y; Liu Y; Sun R; Zou H; Zhou H; Fan X
    J Craniofac Surg; 2020; 31(2):400-403. PubMed ID: 31842071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm.
    Ju RY; Cai W
    Sci Rep; 2023 Nov; 13(1):20077. PubMed ID: 37973984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentials of ultrasound in the diagnosis of midfacial fractures*.
    Friedrich RE; Heiland M; Bartel-Friedrich S
    Clin Oral Investig; 2003 Dec; 7(4):226-9. PubMed ID: 14648259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a diagnostic support system for distal humerus fracture using artificial intelligence.
    Kekatpure A; Kekatpure A; Deshpande S; Srivastava S
    Int Orthop; 2024 May; 48(5):1303-1311. PubMed ID: 38499714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved SSD network for fast concealed object detection and recognition in passive terahertz security images.
    Cheng L; Ji Y; Li C; Liu X; Fang G
    Sci Rep; 2022 Jul; 12(1):12082. PubMed ID: 35840636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack detection for concrete bridges with imaged based deep learning.
    Wan C; Xiong X; Wen B; Gao S; Fang D; Yang C; Xue S
    Sci Prog; 2022; 105(4):368504221128487. PubMed ID: 36177737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility.
    Zhou QQ; Wang J; Tang W; Hu ZC; Xia ZY; Li XS; Zhang R; Yin X; Zhang B; Zhang H
    Korean J Radiol; 2020 Jul; 21(7):869-879. PubMed ID: 32524787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of automatic rib fracture detection on chest CT using a deep learning algorithm.
    Wang S; Wu D; Ye L; Chen Z; Zhan Y; Li Y
    Eur Radiol; 2023 Mar; 33(3):1824-1834. PubMed ID: 36214848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Sonography as a training tool for screening of dubious midfacial fractures].
    Heiland M; Lenard M; Schmelzle R; Friedrich RE
    Mund Kiefer Gesichtschir; 2004 Jul; 8(4):244-9. PubMed ID: 15293120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rib fracture detection system based on deep learning.
    Yao L; Guan X; Song X; Tan Y; Wang C; Jin C; Chen M; Wang H; Zhang M
    Sci Rep; 2021 Dec; 11(1):23513. PubMed ID: 34873241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.