These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38751116)

  • 1. Peptide diffusion in biomolecular condensates.
    Workman RJ; Huang CJ; Lynch GC; Pettitt BM
    Biophys J; 2024 Jun; 123(12):1668-1675. PubMed ID: 38751116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy.
    Alshareedah I; Banerjee PR
    Methods Mol Biol; 2023; 2563():199-213. PubMed ID: 36227474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis.
    Emenecker RJ; Holehouse AS; Strader LC
    Cell Commun Signal; 2021 Jun; 19(1):65. PubMed ID: 34090478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced surface passivation for high-sensitivity studies of biomolecular condensates.
    Yao RW; Rosen MK
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2403013121. PubMed ID: 38781207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental Aspects of Phase-Separated Biomolecular Condensates.
    Zhou HX; Kota D; Qin S; Prasad R
    Chem Rev; 2024 Jul; 124(13):8550-8595. PubMed ID: 38885177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Compensation in Peptides Following Liquid-Liquid Phase Separation.
    Workman RJ; Pettitt BM
    J Phys Chem B; 2021 Jun; 125(24):6431-6439. PubMed ID: 34110175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein.
    Chuang HY; He RY; Huang YA; Hsu WT; Cheng YJ; Guo ZR; Wali N; Hwang IS; Shie JJ; Huang JJ
    Nat Commun; 2024 Jul; 15(1):5686. PubMed ID: 38971830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preserving condensate structure and composition by lowering sequence complexity.
    Sood A; Zhang B
    Biophys J; 2024 Jul; 123(13):1815-1826. PubMed ID: 38824391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Bonded Network of Water in Phase-Separated Biomolecular Condensates.
    Joshi A; Avni A; Walimbe A; Rai SK; Sarkar S; Mukhopadhyay S
    J Phys Chem Lett; 2024 Aug; 15(30):7724-7734. PubMed ID: 39042834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do polyproline II helix associations modulate biomolecular condensates?
    Mompeán M; Oroz J; Laurents DV
    FEBS Open Bio; 2021 Sep; 11(9):2390-2399. PubMed ID: 33934561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein Condensate Atlas from predictive models of heteromolecular condensate composition.
    Saar KL; Scrutton RM; Bloznelyte K; Morgunov AS; Good LL; Lee AA; Teichmann SA; Knowles TPJ
    Nat Commun; 2024 Jul; 15(1):5418. PubMed ID: 38987300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecular Condensates in Contact with Membranes.
    Mangiarotti A; Dimova R
    Annu Rev Biophys; 2024 Jul; 53(1):319-341. PubMed ID: 38360555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative theory for the diffusive dynamics of liquid condensates.
    Hubatsch L; Jawerth LM; Love C; Bauermann J; Tang TD; Bo S; Hyman AA; Weber CA
    Elife; 2021 Oct; 10():. PubMed ID: 34636323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demixing is a default process for biological condensates formed via phase separation.
    Zhu S; Shen Z; Wu X; Han W; Jia B; Lu W; Zhang M
    Science; 2024 May; 384(6698):920-928. PubMed ID: 38781377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate.
    Wu YO; Bryant AT; Nelson NT; Madey AG; Fernandes GF; Goodson HV
    PLoS One; 2021; 16(12):e0260401. PubMed ID: 34890409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.