BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38751207)

  • 1. Multiphoton Lithography of Interpenetrating Polymer Networks for Tailored Microstructure Thermal and Micromechanical Properties.
    Silbernagl D; Szymoniak P; Tavasolyzadeh Z; Sturm H; Topolniak I
    Small; 2024 May; ():e2310580. PubMed ID: 38751207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Time Behavior of Surface Properties of Microstructures Fabricated by Multiphoton Lithography.
    Dudziak M; Topolniak I; Silbernagl D; Altmann K; Sturm H
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in the development of interpenetrating polymer network hydrogels.
    Myung D; Waters D; Wiseman M; Duhamel PE; Noolandi J; Ta CN; Frank CW
    Polym Adv Technol; 2008 Apr; 19(6):647-657. PubMed ID: 19763189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Hydrolytic Degradable Crosslinked Interpenetrating Polymeric Networks (IPNs): An Efficient Hybrid System to Manage the Controlled Release and Degradation of Misoprostol.
    Mehmood Y; Shahid H; Barkat K; Arshad N; Rasul A; Uddin MN; Kazi M
    Gels; 2023 Aug; 9(9):. PubMed ID: 37754378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review.
    Farooq U; Teuwen J; Dransfeld C
    Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32847125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CuAAC-methacrylate interpenetrating polymer network (IPN) properties modulated by visible-light photoinitiation.
    Kabra M; Kloxin CJ
    Polym Chem; 2023 Aug; 14(32):3739-3748. PubMed ID: 37663952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tough, Transparent, Photocurable Hybrid Elastomers.
    Silvaroli AJ; Heyl TR; Qiang Z; Beebe JM; Ahn D; Mangold S; Shull KR; Wang M
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44125-44136. PubMed ID: 32856894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable growth of interpenetrating or random copolymer networks.
    Chatterjee R; Biswas S; Yashin VV; Aizenberg M; Aizenberg J; Balazs AC
    Soft Matter; 2021 Aug; 17(30):7177-7187. PubMed ID: 34268552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatible polypeptide-based interpenetrating network (IPN) hydrogels with enhanced mechanical properties.
    O'Brien S; Brannigan RP; Ibanez R; Wu B; O'Dwyer J; O'Brien FJ; Cryan SA; Heise A
    J Mater Chem B; 2020 Sep; 8(34):7785-7791. PubMed ID: 32744280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.
    Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Fibrin-Based Interpenetrating Polymer Networks as Potential Biomaterials for Tissue Engineering.
    Gsib O; Duval JL; Goczkowski M; Deneufchatel M; Fichet O; Larreta-Garde V; Bencherif SA; Egles C
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29232876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.
    Zhang Y; Liu J; Huang L; Wang Z; Wang L
    Sci Rep; 2015 Jul; 5():12374. PubMed ID: 26205586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Precision Micropatterning of Polydopamine by Multiphoton Lithography.
    Topolniak I; Elert AM; Knigge X; Ciftci GC; Radnik J; Sturm H
    Adv Mater; 2022 May; 34(18):e2109509. PubMed ID: 35299285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton lithography with protein photoresists.
    Sivun D; Murtezi E; Karimian T; Hurab K; Marefat M; Klimareva E; Naderer C; Buchroithner B; Klar TA; Gvindzhiliia G; Horner A; Jacak J
    Mater Today Bio; 2024 Apr; 25():100994. PubMed ID: 38384793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics.
    Dadras-Toussi O; Khorrami M; Louis Sam Titus ASC; Majd S; Mohan C; Abidian MR
    Adv Mater; 2022 Jul; 34(30):e2200512. PubMed ID: 35707927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications.
    Karabanova LV; Lloyd AW; Mikhalovsky SV; Helias M; Phillips GJ; Rose SF; Mikhalovska L; Boiteux G; Sergeeva LM; Lutsyk ED; Svyatyna A
    J Mater Sci Mater Med; 2006 Dec; 17(12):1283-96. PubMed ID: 17143760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Effect of Poly(propylene carbonate) Polyol in a Biobased Epoxy Interpenetrating Network.
    Roudsari GM; Mohanty AK; Misra M
    ACS Omega; 2017 Feb; 2(2):611-617. PubMed ID: 31457458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positron annihilation spectroscopic characterization of free-volume defects and their correlations with the mechanical and transport properties of SBR-PMMA interpenetrating polymer networks.
    James J; Thomas GV; Madathil AP; Nambissan PMG; Kalarikkal N; Thomas S
    Phys Chem Chem Phys; 2020 Aug; 22(32):18169-18182. PubMed ID: 32766640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.