These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Volk AA; Campbell ZS; Ibrahim MYS; Bennett JA; Abolhasani M Annu Rev Chem Biomol Eng; 2022 Jun; 13():45-72. PubMed ID: 35259931 [TBL] [Abstract][Full Text] [Related]
24. [Applications of microfluidic paper-based chips in environmental analysis and detection]. Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581 [TBL] [Abstract][Full Text] [Related]
30. Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip. McRae MP; Simmons G; McDevitt JT Bioanalysis; 2016 May; 8(9):905-19. PubMed ID: 27071710 [TBL] [Abstract][Full Text] [Related]
31. Microfabricated analytical systems for integrated cancer cytomics. Wlodkowic D; Cooper JM Anal Bioanal Chem; 2010 Sep; 398(1):193-209. PubMed ID: 20419489 [TBL] [Abstract][Full Text] [Related]
32. Exploring the potential of machine learning for more efficient development and production of biopharmaceuticals. Puranik A; Dandekar P; Jain R Biotechnol Prog; 2022 Nov; 38(6):e3291. PubMed ID: 35918873 [TBL] [Abstract][Full Text] [Related]
33. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. Wang C; Qiu J; Liu M; Wang Y; Yu Y; Liu H; Zhang Y; Han L Adv Sci (Weinh); 2024 Jul; 11(28):e2401263. PubMed ID: 38767182 [TBL] [Abstract][Full Text] [Related]
34. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review. Buckley K; Ryder AG Appl Spectrosc; 2017 Jun; 71(6):1085-1116. PubMed ID: 28534676 [TBL] [Abstract][Full Text] [Related]
35. Continuous downstream processing of biopharmaceuticals. Jungbauer A Trends Biotechnol; 2013 Aug; 31(8):479-92. PubMed ID: 23849674 [TBL] [Abstract][Full Text] [Related]
36. Innovative Drying Technologies for Biopharmaceuticals. Sharma A; Khamar D; Cullen S; Hayden A; Hughes H Int J Pharm; 2021 Nov; 609():121115. PubMed ID: 34547393 [TBL] [Abstract][Full Text] [Related]
37. Multiplexed Microfluidic Cartridge for At-Line Protein Monitoring in Mammalian Cell Culture Processes for Biopharmaceutical Production. Pinto IF; Soares RRG; Mäkinen ME; Chotteau V; Russom A ACS Sens; 2021 Mar; 6(3):842-851. PubMed ID: 33724791 [TBL] [Abstract][Full Text] [Related]
38. Biopharmaceuticals from microorganisms: from production to purification. Jozala AF; Geraldes DC; Tundisi LL; Feitosa VA; Breyer CA; Cardoso SL; Mazzola PG; Oliveira-Nascimento L; Rangel-Yagui CO; Magalhães PO; Oliveira MA; Pessoa A Braz J Microbiol; 2016 Dec; 47 Suppl 1(Suppl 1):51-63. PubMed ID: 27838289 [TBL] [Abstract][Full Text] [Related]
39. Flow-electricity coupling fields enhance microfluidic platforms for efficient exosome isolation. Hu T; Han W; Zhou Y; Tu W; Li X; Ni Z Anal Methods; 2024 Aug; 16(30):5335-5344. PubMed ID: 39034856 [TBL] [Abstract][Full Text] [Related]
40. Systematic assessment of process analytical technologies for biologics. Gillespie C; Wasalathanthri DP; Ritz DB; Zhou G; Davis KA; Wucherpfennig T; Hazelwood N Biotechnol Bioeng; 2022 Feb; 119(2):423-434. PubMed ID: 34778948 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]