BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38751845)

  • 1. Editorial: IoT, UAV, BCI empowered deep learning models in precision agriculture.
    Lian J; Dias Pereira J
    Front Plant Sci; 2024; 15():1399753. PubMed ID: 38751845
    [No Abstract]   [Full Text] [Related]  

  • 2. A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Cluster Comput; 2023; 26(2):1297-1317. PubMed ID: 35968221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles.
    Gao D; Sun Q; Hu B; Zhang S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning techniques to classify agricultural crops through UAV imagery: a review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Neural Comput Appl; 2022; 34(12):9511-9536. PubMed ID: 35281624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification.
    Nadana Ravishankar T; Ramprasath M; Daniel A; Selvarajan S; Subbiah P; Balusamy B
    Sci Rep; 2023 Dec; 13(1):23041. PubMed ID: 38155207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced UAV-WSN System for Intelligent Monitoring in Precision Agriculture.
    Popescu D; Stoican F; Stamatescu G; Ichim L; Dragana C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32028736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internet of things enabled deep learning methods using unmanned aerial vehicles enabled integrated farm management.
    Mishra S
    Heliyon; 2023 Aug; 9(8):e18659. PubMed ID: 37576187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agricultural plant cataloging and establishment of a data framework from UAV-based crop images by computer vision.
    Günder M; Ispizua Yamati FR; Kierdorf J; Roscher R; Mahlein AK; Bauckhage C
    Gigascience; 2022 Jun; 11():. PubMed ID: 35715875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intelligent identification of livestock, a source of
    Xue J; Xia S; Li Z; Wang X; Huang L; He R; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2023 May; 35(2):121-127. PubMed ID: 37253560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resource Allocation in Unmanned Aerial Vehicle (UAV)-Assisted Wireless-Powered Internet of Things.
    Liu B; Xu H; Zhou X
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances and Challenges in Drone Detection and Classification Techniques: A State-of-the-Art Review.
    Seidaliyeva U; Ilipbayeva L; Taissariyeva K; Smailov N; Matson ET
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Editorial: Artificial intelligence-of-things (AIoT) in precision agriculture.
    Majeed Y; Fu L; He L
    Front Plant Sci; 2024; 15():1369791. PubMed ID: 38344185
    [No Abstract]   [Full Text] [Related]  

  • 15. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Internet of Things and Deep Learning Techniques in Plant Disease Detection and Classification: A Focused Review.
    Dhaka VS; Kundu N; Rani G; Zumpano E; Vocaturo E
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Power IoT for Monitoring Unconnected Remote Areas.
    Andreadis A; Giambene G; Zambon R
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Industrial IoT Monitoring and Control System Based on UAV and Cloud Computing Applied to a Concrete Plant.
    Salhaoui M; Guerrero-González A; Arioua M; Ortiz FJ; El Oualkadi A; Torregrosa CL
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.