BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 38751938)

  • 1. Knockout cancer by nano-delivered immunotherapy using perfusion-aided scaffold-based tumor-on-a-chip.
    Suryavanshi P; Bodas D
    Nanotheranostics; 2024; 8(3):380-400. PubMed ID: 38751938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
    Zhang J; Tavakoli H; Ma L; Li X; Han L; Li X
    Adv Drug Deliv Rev; 2022 Aug; 187():114365. PubMed ID: 35667465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Veritas: From 2D Cultures to Organ-on-a-Chip Models to Study Immunogenic Cell Death in the Tumor Microenvironment.
    Krysko DV; Demuynck R; Efimova I; Naessens F; Krysko O; Catanzaro E
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment.
    Kumar V; Varghese S
    Adv Healthc Mater; 2019 Feb; 8(4):e1801198. PubMed ID: 30516355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research.
    Liu X; Su Q; Zhang X; Yang W; Ning J; Jia K; Xin J; Li H; Yu L; Liao Y; Zhang D
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic.
    Dzobo K
    OMICS; 2020 Apr; 24(4):175-179. PubMed ID: 32176591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Tumor Models and Their Use for the Testing of Immunotherapies.
    Boucherit N; Gorvel L; Olive D
    Front Immunol; 2020; 11():603640. PubMed ID: 33362787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breast cancer models: Engineering the tumor microenvironment.
    Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P
    Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cancer immunotherapy using mini-tumor chips.
    Ao Z; Cai H; Wu Z; Hu L; Li X; Kaurich C; Gu M; Cheng L; Lu X; Guo F
    Theranostics; 2022; 12(8):3628-3636. PubMed ID: 35664082
    [No Abstract]   [Full Text] [Related]  

  • 10. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment.
    Ravi K; Manoharan TJM; Wang KC; Pockaj B; Nikkhah M
    Biomaterials; 2024 Mar; 305():122428. PubMed ID: 38147743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in traditional herbal formulation based nano-vaccine for cancer immunotherapy: Unraveling the enigma of complex tumor environment and multidrug resistance.
    Saeed Y; Zhong R; Sun Z
    Int Immunopharmacol; 2024 May; 132():111948. PubMed ID: 38554445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid.
    Nashimoto Y; Okada R; Hanada S; Arima Y; Nishiyama K; Miura T; Yokokawa R
    Biomaterials; 2020 Jan; 229():119547. PubMed ID: 31710953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy.
    Le QV; Suh J; Oh YK
    AAPS J; 2019 May; 21(4):64. PubMed ID: 31102154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintenance of Primary Human Colorectal Cancer Microenvironment Using a Perfusion Bioreactor-Based 3D Culture System.
    Manfredonia C; Muraro MG; Hirt C; Mele V; Governa V; Papadimitropoulos A; Däster S; Soysal SD; Droeser RA; Mechera R; Oertli D; Rosso R; Bolli M; Zettl A; Terracciano LM; Spagnoli GC; Martin I; Iezzi G
    Adv Biosyst; 2019 Apr; 3(4):e1800300. PubMed ID: 32627426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CU06-1004-Induced Vascular Normalization Improves Immunotherapy by Modulating Tumor Microenvironment
    Park S; Oh JH; Park DJ; Zhang H; Noh M; Kim Y; Kim YS; Kim H; Kim YM; Ha SJ; Kwon YG
    Front Immunol; 2020; 11():620166. PubMed ID: 33584714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment.
    Berger Fridman I; Kostas J; Gregus M; Ray S; Sullivan MR; Ivanov AR; Cohen S; Konry T
    Acta Biomater; 2021 Sep; 132():473-488. PubMed ID: 34153511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Modeling the Immune Microenvironment of Colorectal Cancer.
    Yoon PS; Del Piccolo N; Shirure VS; Peng Y; Kirane A; Canter RJ; Fields RC; George SC; Gholami S
    Front Immunol; 2020; 11():614300. PubMed ID: 33643296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in 3D Vascularized Tumor-on-a-Chip Technology.
    Jung S; Jo H; Hyung S; Jeon NL
    Adv Exp Med Biol; 2022; 1379():231-256. PubMed ID: 35760994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment.
    Rebelo SP; Pinto C; Martins TR; Harrer N; Estrada MF; Loza-Alvarez P; Cabeçadas J; Alves PM; Gualda EJ; Sommergruber W; Brito C
    Biomaterials; 2018 May; 163():185-197. PubMed ID: 29477032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.