BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38751997)

  • 1. Polymeric piezoelectric accelerometers with high sensitivity, broad bandwidth, and low noise density for organic electronics and wearable microsystems.
    Ge C; Cretu E
    Microsyst Nanoeng; 2024; 10():61. PubMed ID: 38751997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polymeric piezoelectric MEMS accelerometer with high sensitivity, low noise density, and an innovative manufacturing approach.
    Ge C; Cretu E
    Microsyst Nanoeng; 2023; 9():151. PubMed ID: 38033989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aerosol deposition based MEMS piezoelectric accelerometer for low noise measurement.
    Gong X; Kuo YC; Zhou G; Wu WJ; Liao WH
    Microsyst Nanoeng; 2023; 9():23. PubMed ID: 36890847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Sensitivity Piezoelectric MEMS Accelerometer for Vector Hydrophones.
    Shi S; Ma L; Kang K; Zhu J; Hu J; Ma H; Pang Y; Wang Z
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Piezoelectric Dual-Bandwidth Accelerometers for Completely Implantable Auditory Prostheses.
    Hake AE; Kitsopoulos P; Grosh K
    IEEE Sens J; 2023 Jul; 23(13):13957-13965. PubMed ID: 38766647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Experimental Assessment of Low-Noise Piezoelectric Microelectromechanical Systems Vibration Sensors.
    Hake AE; Zhao C; Sung WK; Grosh K
    IEEE Sens J; 2021 Aug; 21(16):17703-17711. PubMed ID: 35177956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Sensing Soft Skin Based on Piezoelectric Nanofibers.
    Selleri G; Mongioì F; Maccaferri E; D'Anniballe R; Mazzocchetti L; Carloni R; Fabiani D; Zucchelli A; Brugo TM
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers.
    Mohammed Z; Elfadel IAM; Rasras M
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30453536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Experimental Evaluation of a Dual-Cantilever Piezoelectric Film Sensor with a Broadband Response and High Sensitivity.
    Xin W; He Z; Zhao C
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A High-Sensitivity MEMS Accelerometer Using a Sc
    Zhang Z; Zhang L; Wu Z; Gao Y; Lou L
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Tri-Axial Piezoelectric MEMS Accelerometer with Folded Beams.
    Liu Y; Hu B; Cai Y; Liu W; Tovstopyat A; Sun C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics.
    Maity K; Garain S; Henkel K; Schmeißer D; Mandal D
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Strain-Sensing Properties of the Conductive Hydrogel by Introducing PVDF-TrFE.
    Hu Z; Li J; Wei X; Wang C; Cao Y; Gao Z; Han J; Li Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45853-45868. PubMed ID: 36170495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances of polymer-based piezoelectric composites for biomedical applications.
    Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Assessment of the Interface Electronic System for PVDF-Based Piezoelectric Tactile Sensors.
    Saleh M; Abbass Y; Ibrahim A; Valle M
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead-Free BF-BT Ceramics With Ultrahigh Curie Temperature for Piezoelectric Accelerometer.
    Yang H; Sun Y; Gao H; Zhou X; Tan H; Shu C; Salamon D; Guan S; Chen S; Zhang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3102-3107. PubMed ID: 35030078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.
    Buxi D; Redouté JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1420-3. PubMed ID: 25570234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review.
    Guo S; Duan X; Xie M; Aw KC; Xue Q
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33287450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress on Hydrogel-Based Piezoelectric Devices for Biomedical Applications.
    Du Y; Du W; Lin D; Ai M; Li S; Zhang L
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.