These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38752017)

  • 1. Synthesis of Bottlebrush Polymers with Spontaneous Self-Assembly for Dielectric Generators.
    Adeli Y; Raman Venkatesan T; Mezzenga R; Nüesch FA; Opris DM
    ACS Appl Polym Mater; 2024 May; 6(9):4999-5010. PubMed ID: 38752017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-Demand Cross-Linkable Bottlebrush Polymers for Voltage-Driven Artificial Muscles.
    Adeli Y; Owusu F; Nüesch FA; Opris DM
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20410-20420. PubMed ID: 37042624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Strategies for Improved Dielectric Elastomer Electrical Breakdown Strengths.
    Yu L; Skov AL
    Macromol Rapid Commun; 2018 Jul; ():e1800383. PubMed ID: 30039539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble polyphosphonate-based bottlebrush copolymers
    Resendiz-Lara DA; Azhdari S; Gojzewski H; Gröschel AH; Wurm FR
    Chem Sci; 2023 Oct; 14(40):11273-11282. PubMed ID: 37860667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Muscles: Dielectric Elastomers Responsive to Low Voltages.
    Sheima Y; Caspari P; Opris DM
    Macromol Rapid Commun; 2019 Aug; 40(16):e1900205. PubMed ID: 31206943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically Driven Artificial Muscles Using Novel Polysiloxane Elastomers Modified with Nitroaniline Push-Pull Moieties.
    Perju E; Shova S; Opris DM
    ACS Appl Mater Interfaces; 2020 May; 12(20):23432-23442. PubMed ID: 32340440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell Gyroid in ABC Bottlebrush Block Terpolymers.
    Cui S; Zhang B; Shen L; Bates FS; Lodge TP
    J Am Chem Soc; 2022 Nov; 144(47):21719-21727. PubMed ID: 36379011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold.
    Ahn SK; Carrillo JY; Keum JK; Chen J; Uhrig D; Lokitz BS; Sumpter BG; Michael Kilbey S
    Nanoscale; 2017 Jun; 9(21):7071-7080. PubMed ID: 28422265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.
    Radzinski SC; Foster JC; Matson JB
    Macromol Rapid Commun; 2016 Apr; 37(7):616-21. PubMed ID: 26847467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach.
    Lu H; Cai J; Fang Y; Ren M; Tan X; Jia F; Wang D; Zhang K
    Macromolecules; 2022 Mar; 55(6):2235-2242. PubMed ID: 36187461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric Elastomers UV-Cured from Poly(dimethylsiloxane) Solution in Vinyl Acetate.
    Park SK; Choi M; Kim DW; Park BJ; Shin EJ; Park S; Yun S
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33187228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, function, self-assembly, and applications of bottlebrush copolymers.
    Verduzco R; Li X; Pesek SL; Stein GE
    Chem Soc Rev; 2015 Apr; 44(8):2405-20. PubMed ID: 25688538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifying the Backbone Chemistry of PEG-Based Bottlebrush Block Copolymers for the Formation of Long-Circulating Nanoparticles.
    Grundler J; Whang CH; Shin K; Savan NA; Zhong M; Saltzman WM
    Adv Healthc Mater; 2024 May; ():e2304040. PubMed ID: 38734871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of cellulose and plant oil toward sustainable bottlebrush copolymer elastomers with tunable mechanical performance.
    Yu H; Feng J; Tang P; Chen S; Wang Z; Wang Z; Jiang F
    Int J Biol Macromol; 2022 Jun; 209(Pt B):1848-1857. PubMed ID: 35487380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives.
    Arrington KJ; Radzinski SC; Drummey KJ; Long TE; Matson JB
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26662-26668. PubMed ID: 30062885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Mediated Synthesis and Reprocessing of Dynamic Bottlebrush Elastomers under Ambient Conditions.
    Choi C; Self JL; Okayama Y; Levi AE; Gerst M; Speros JC; Hawker CJ; Read de Alaniz J; Bates CM
    J Am Chem Soc; 2021 Jul; 143(26):9866-9871. PubMed ID: 34170665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsically Tuning the Electromechanical Properties of Elastomeric Dielectrics: A Chemistry Perspective.
    Ellingford C; Bowen C; McNally T; Wan C
    Macromol Rapid Commun; 2018 Sep; 39(18):e1800340. PubMed ID: 30073709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Order-to-Disorder Transitions in Lamellar Melt Self-Assembled Core-Shell Bottlebrush Polymers.
    Karavolias MG; Elder JB; Ness EM; Mahanthappa MK
    ACS Macro Lett; 2019 Dec; 8(12):1617-1622. PubMed ID: 35619390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructures, Linear Rheological Responses, and Tunable Mechanical Properties of Microphase-Separated Cellulose-
    Sun H; Wang X; Chen Q; Wang Z
    Biomacromolecules; 2023 Aug; 24(8):3647-3656. PubMed ID: 37462907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient Elastomers with High Dielectric Permittivity for Actuators, Sensors, and Beyond.
    Sheima Y; von Szczepanski J; Danner PM; Künniger T; Remhof A; Frauenrath H; Opris DM
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40257-40265. PubMed ID: 35998318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.