These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38752020)
21. Enhanced Activity of Alkali-Treated ZSM-5 Zeolite-Supported Pt-Co Catalyst for Selective Hydrogenation of Cinnamaldehyde. Cheng S; Lu S; Liu X; Li G; Wang F Molecules; 2023 Feb; 28(4):. PubMed ID: 36838718 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. Huang J; Liu Z; He C; Gan LM J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117 [TBL] [Abstract][Full Text] [Related]
23. Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H Hu M; Yao Z; Li L; Tsou YH; Kuang L; Xu X; Zhang W; Wang X Nanoscale; 2018 May; 10(21):10203-10212. PubMed ID: 29786726 [TBL] [Abstract][Full Text] [Related]
24. The influence of Mg/Al molar ratio on the performance of CuMgAl-x catalysts for CO Liu H; Huang W; Xu Z; Jia Y; Huang M; Liu X; Yang H; Li R; Wei Q; Zhou Y Front Chem; 2024; 12():1361930. PubMed ID: 38549838 [TBL] [Abstract][Full Text] [Related]
25. Assessment of the Location of Pt Nanoparticles in Pt/zeolite Y/γ-Al Oenema J; Hofmann JP; Hensen EJM; Zečević J; de Jong KP ChemCatChem; 2020 Jan; 12(2):615-622. PubMed ID: 32064008 [TBL] [Abstract][Full Text] [Related]
26. In situ identification of surface sites in Cu-Pt bimetallic catalysts: Gas-induced metal segregation. Han T; Li Y; Cao Y; Lee I; Zhou X; Frenkel AI; Zaera F J Chem Phys; 2022 Dec; 157(23):234706. PubMed ID: 36550054 [TBL] [Abstract][Full Text] [Related]
27. In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Rodriguez JA; Hanson JC; Stacchiola D; Senanayake SD Phys Chem Chem Phys; 2013 Aug; 15(29):12004-25. PubMed ID: 23660768 [TBL] [Abstract][Full Text] [Related]
28. Probing the low-temperature water-gas shift activity of alkali-promoted platinum catalysts stabilized on carbon supports. Zugic B; Zhang S; Bell DC; Tao FF; Flytzani-Stephanopoulos M J Am Chem Soc; 2014 Feb; 136(8):3238-45. PubMed ID: 24502260 [TBL] [Abstract][Full Text] [Related]
29. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. Alayoglu S; Eichhorn B J Am Chem Soc; 2008 Dec; 130(51):17479-86. PubMed ID: 19049272 [TBL] [Abstract][Full Text] [Related]
30. Pt-Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. Shiraishi Y; Sakamoto H; Sugano Y; Ichikawa S; Hirai T ACS Nano; 2013 Oct; 7(10):9287-97. PubMed ID: 24063681 [TBL] [Abstract][Full Text] [Related]
31. Pollutant Abatement of Nitrogen-Based Fuel Effluents over Mono- and Bimetallic Pt/Ru Catalysts. Kutteri DA; Mosevitzky B; Epstein M; Shter GE; Grader GS ACS Omega; 2017 Nov; 2(11):8273-8281. PubMed ID: 31457367 [TBL] [Abstract][Full Text] [Related]
32. Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films. Han L; Wiedwald U; Biskupek J; Fauth K; Kaiser U; Ziemann P Beilstein J Nanotechnol; 2011; 2():473-85. PubMed ID: 22003453 [TBL] [Abstract][Full Text] [Related]
33. Application of silica-supported Ir and Ir-M (M = Pt, Pd, Au) catalysts for low-temperature hydrodechlorination of tetrachloromethane. Bonarowska M; Matus K; Śrębowata A; Sá J Sci Total Environ; 2018 Dec; 644():287-297. PubMed ID: 29981976 [TBL] [Abstract][Full Text] [Related]
34. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. Oezaslan M; Heggen M; Strasser P J Am Chem Soc; 2012 Jan; 134(1):514-24. PubMed ID: 22129031 [TBL] [Abstract][Full Text] [Related]
35. Kinetic Studies of the Pt Carbonate-Mediated, Room-Temperature Oxidation of Carbon Monoxide by Oxygen over Pt/Al Newton MA; Ferri D; Smolentsev G; Marchionni V; Nachtegaal M J Am Chem Soc; 2016 Oct; 138(42):13930-13940. PubMed ID: 27696837 [TBL] [Abstract][Full Text] [Related]
36. Low-Temperature Catalytic NO Reduction with CO by Subnanometric Pt Clusters. Fernández E; Liu L; Boronat M; Arenal R; Concepcion P; Corma A ACS Catal; 2019 Dec; 9(12):11530-11541. PubMed ID: 31840009 [TBL] [Abstract][Full Text] [Related]
37. Enhancement of catalytic toluene combustion over Pt-Co Zhang M; Zou S; Mo S; Zhong J; Chen D; Ren Q; Fu M; Chen P; Ye D Chemosphere; 2021 Jan; 262():127738. PubMed ID: 32763575 [TBL] [Abstract][Full Text] [Related]
38. Homogeneous and highly dispersed Ni-Ru on a silica support as an effective CO methanation catalyst. Liu Y; Sheng W; Hou Z; Zhang Y RSC Adv; 2018 Jan; 8(4):2123-2131. PubMed ID: 35542588 [TBL] [Abstract][Full Text] [Related]
39. The role of the gold-platinum interface in AuPt/TiO Hammoud L; Strebler C; Toufaily J; Hamieh T; Keller V; Caps V Faraday Discuss; 2023 Jan; 242(0):443-463. PubMed ID: 36205304 [TBL] [Abstract][Full Text] [Related]
40. Optimizing the synergy between alloy and alloy-oxide interface for CO oxidation in bimetallic catalysts. Pan Y; Xu L; He W; Li H; Chen W; Sun Z Nanoscale; 2022 May; 14(19):7303-7313. PubMed ID: 35532914 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]