BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38752383)

  • 1. Modulating Nonlinear Acoustic Response of Phospholipid-Coated Microbubbles with pH for Ultrasound Imaging.
    Ali S; de Gracia Lux C; Brown K; Endsley C; Woodward A; Mattrey R; Lux J
    ACS Sens; 2024 May; 9(5):2356-2363. PubMed ID: 38752383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbubbles Cloaked with Hydrogels as Activatable Ultrasound Contrast Agents.
    Burns MWN; Mattrey RF; Lux J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52298-52306. PubMed ID: 33170637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Microbubble Echo Phase Lag in Multipulse Contrast-Enhanced Ultrasound Imaging.
    Tremblay-Darveau C; Sheeran PS; Vu CK; Williams R; Zhang Z; Bruce M; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1389-1401. PubMed ID: 29993575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.
    Li H; Yang Y; Zhang M; Yin L; Tu J; Guo X; Zhang D
    J Ultrasound Med; 2018 May; 37(5):1243-1256. PubMed ID: 29127707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow.
    Chattaraj R; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2021 Sep; 47(9):2676-2691. PubMed ID: 34112553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles.
    Grishenkov D; Kari L; Brodin LK; Brismar TB; Paradossi G
    Ultrasonics; 2011 Jan; 51(1):40-8. PubMed ID: 20542310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound contrast agents: basic principles.
    Calliada F; Campani R; Bottinelli O; Bozzini A; Sommaruga MG
    Eur J Radiol; 1998 May; 27 Suppl 2():S157-60. PubMed ID: 9652516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic characterization of single ultrasound contrast agent microbubbles.
    Sijl J; Gaud E; Frinking PJ; Arditi M; de Jong N; Lohse D; Versluis M
    J Acoust Soc Am; 2008 Dec; 124(6):4091-7. PubMed ID: 19206831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The delayed onset of subharmonic and ultraharmonic emissions from a phospholipid-shelled microbubble contrast agent.
    Shekhar H; Awuor I; Thomas K; Rychak JJ; Doyley MM
    Ultrasound Med Biol; 2014 Apr; 40(4):727-38. PubMed ID: 24582298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanobubbles are Non-Echogenic for Fundamental-Mode Contrast-Enhanced Ultrasound Imaging.
    Myers JZ; Navarro-Becerra JA; Borden MA
    Bioconjug Chem; 2022 Jun; 33(6):1106-1113. PubMed ID: 35476906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow size distribution of microbubbles for enhancement of harmonic imaging.
    Moon H; Yu J; Park S; Chang JH; Song TK; Kim H
    J Biomed Nanotechnol; 2013 May; 9(5):845-8. PubMed ID: 23802414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Ultrasound Contrast Imaging of Tumor Vasculature With Positively Charged Microbubbles.
    Diakova GB; Du Z; Klibanov AL
    Invest Radiol; 2020 Nov; 55(11):736-740. PubMed ID: 32569011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging.
    Tang MX; Eckersley RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2406-15. PubMed ID: 17186923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Characterization of Hemoglobin Microbubbles for Acoustic Blood Oxygen Level Dependent Imaging.
    Chaudhary S; Akter N; Pathour T; Kian Pour B; Rastegar G; Menon A; Brown KG; Fei B; Hwang M; Sirsi SR
    ACS Sens; 2024 Jun; 9(6):2826-2835. PubMed ID: 38787788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and characterization of targeted ultrasound microbubbles for diagnostic use.
    Myrset AH; Fjerdingstad HB; Bendiksen R; Arbo BE; Bjerke RM; Johansen JH; Kulseth MA; Skurtveit R
    Ultrasound Med Biol; 2011 Jan; 37(1):136-50. PubMed ID: 21144962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorous-phase iron oxide nanoparticles as enhancers of acoustic droplet vaporization of perfluorocarbons with supra-physiologic boiling point.
    Vezeridis AM; de Gracia Lux C; Barnhill SA; Kim S; Wu Z; Jin S; Lux J; Gianneschi NC; Mattrey RF
    J Control Release; 2019 May; 302():54-62. PubMed ID: 30928487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency.
    Helfield BL; Leung BY; Huo X; Goertz DE
    Ultrasonics; 2014 Aug; 54(6):1419-24. PubMed ID: 24746478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment.
    Rix A; Lederle W; Siepmann M; Fokong S; Behrendt FF; Bzyl J; Grouls C; Kiessling F; Palmowski M
    Eur J Radiol; 2012 Oct; 81(10):2710-6. PubMed ID: 22093958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acoustic signature of decaying resonant phospholipid microbubbles.
    Thomas DH; Butler M; Pelekasis N; Anderson T; Stride E; Sboros V
    Phys Med Biol; 2013 Feb; 58(3):589-99. PubMed ID: 23318409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):263-8. PubMed ID: 18977009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.