These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38752384)

  • 1. Effect of pyrite particle size on the denitrification performance of autotrophic or split-mixotrophic bioreactors supported by pyrite/polycaprolactone.
    Guo X; Peng G; Tan L; Zhang Y; Wang J; Wang W; Zhang S
    Water Environ Res; 2024 May; 96(5):e11040. PubMed ID: 38752384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the influencing mechanism of hydraulic retention time on purification performance of a mixotrophic system from the perspective of reaction kinetics.
    Yuan S; Zhong Q; Zhang H; Zhu W; Wang W; Zhang S
    Environ Sci Pollut Res Int; 2024 Feb; 31(9):12933-12947. PubMed ID: 38236564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enrichment of more functional microbes induced by the increasing hydraulic retention time accounts for the increment of autotrophic denitrification performance.
    Yuan S; Zhong Q; Zhang H; Zhu W; Wang W; Li M; Tang X; Zhang S
    Environ Res; 2023 Nov; 236(Pt 2):116848. PubMed ID: 37558114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hydraulic retention time on performance of autotrophic, heterotrophic, and split-mixotrophic denitrification systems supported by polycaprolactone/pyrite: Difference and potential explanation.
    Yuan S; Zhu W; Guo W; Sang W; Zhang S
    Water Environ Res; 2022; 94(12):e10820. PubMed ID: 36514302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of electric current intensity on performance of polycaprolactone/FeS
    Yang X; Tang Z; Xiao L; Zhang S; Jin J; Zhang S
    Bioresour Technol; 2022 Oct; 361():127757. PubMed ID: 35952860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and mechanism of synchronous nitrate and phosphorus removal in constructed pyrite-based mixotrophic denitrification system from secondary effluent.
    Zhang W; Huang F; Hu W
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36816-36825. PubMed ID: 32572742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled pyrite and sulfur autotrophic denitrification for simultaneous removal of nitrogen and phosphorus from secondary effluent: feasibility, performance and mechanisms.
    Chen Z; Pang C; Wen Q
    Water Res; 2023 Sep; 243():120422. PubMed ID: 37523921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixotrophic denitrification using pyrite and biodegradable polymer composite as electron donors.
    Pang Y; Hu L; Wang J
    Bioresour Technol; 2022 May; 351():127011. PubMed ID: 35307522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into pyrite autotrophic denitrification with different mineral properties.
    Li R; Zhang Y; Guan M
    Water Res; 2022 Aug; 221():118763. PubMed ID: 35759850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement and mechanisms of micron-pyrite driven autotrophic denitrification with different pretreatments for treating organic-limited waters.
    Zhu Y; Di Capua F; Li D; Li H
    Chemosphere; 2022 Dec; 308(Pt 1):136306. PubMed ID: 36067811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: Performance change and its underlying mechanism.
    Xu Z; Li Y; Zhou P; Song X; Wang Y
    Sci Total Environ; 2022 Nov; 845():157403. PubMed ID: 35850339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor.
    Chen X; Yang L; Chen F; Song Q; Feng C; Liu X; Li M
    Bioresour Technol; 2022 Feb; 346():126669. PubMed ID: 34995779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification.
    Liu T; Hu Y; Chen N; He Q; Feng C
    J Hazard Mater; 2021 Aug; 416():125844. PubMed ID: 33878651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter.
    Wang Y; Wu G; Zheng X; Mao W; Guan Y
    Bioresour Technol; 2022 Jul; 355():127223. PubMed ID: 35483533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrite and sulfur-coupled autotrophic denitrification system for efficient nitrate and phosphate removal.
    Liu X; Zhao C; Xu T; Liu W; Chen Q; Li L; Tan Y; Wang X; Dong Y
    Bioresour Technol; 2023 Sep; 384():129363. PubMed ID: 37336446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe
    Li H; Li Y; Guo J; Song Y; Hou Y; Lu C; Han Y; Shen X; Liu B
    Environ Res; 2021 Mar; 194():110708. PubMed ID: 33428914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process.
    Tong S; Stocks JL; Rodriguez-Gonzalez LC; Feng C; Ergas SJ
    Bioresour Technol; 2017 Nov; 244(Pt 1):296-303. PubMed ID: 28780263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater.
    Wu P; Yang F; Lian J; Chen B; Wang Y; Meng G; Shen M; Wu H
    Chemosphere; 2024 Aug; 361():142470. PubMed ID: 38810802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical-flow constructed wetland based on pyrite intensification: Mixotrophic denitrification performance and mechanism.
    Chu Y; Liu W; Tan Q; Yang L; Chen J; Ma L; Zhang Y; Wu Z; He F
    Bioresour Technol; 2022 Mar; 347():126710. PubMed ID: 35032559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ
    Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.