These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38752443)
1. Regulatory networks of senescence-associated gene-transcription factors promote degradation in Moso bamboo shoots. Zhang W; Shi M; Yang K; Zhang J; Gao Z; El-Kassaby YA; Li Q; Cao T; Deng S; Qing H; Wang Z; Song X Plant Cell Environ; 2024 Sep; 47(9):3654-3667. PubMed ID: 38752443 [TBL] [Abstract][Full Text] [Related]
2. Association among starch storage, metabolism, related genes and growth of Moso bamboo (Phyllostachys heterocycla) shoots. Zhang J; Ma R; Ding X; Huang M; Shen K; Zhao S; Xiao Z; Xiu C BMC Plant Biol; 2021 Oct; 21(1):477. PubMed ID: 34670492 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide analysis of the KNOX gene family in Moso bamboo: insights into their role in promoting the rapid shoot growth. Jiao Y; Tan J; Guo H; Huang B; Ying Y; Ramakrishnan M; Zhang Z BMC Plant Biol; 2024 Mar; 24(1):213. PubMed ID: 38528453 [TBL] [Abstract][Full Text] [Related]
4. Hormone Distribution and Transcriptome Profiles in Bamboo Shoots Provide Insights on Bamboo Stem Emergence and Growth. Gamuyao R; Nagai K; Ayano M; Mori Y; Minami A; Kojima M; Suzuki T; Sakakibara H; Higashiyama T; Ashikari M; Reuscher S Plant Cell Physiol; 2017 Apr; 58(4):702-716. PubMed ID: 28204696 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). Peng Z; Zhang C; Zhang Y; Hu T; Mu S; Li X; Gao J PLoS One; 2013; 8(11):e78944. PubMed ID: 24244391 [TBL] [Abstract][Full Text] [Related]
6. Expression Analysis and Regulation Network Identification of the CONSTANS-Like Gene Family in Moso Bamboo ( Liu J; Cheng Z; Li X; Xie L; Bai Y; Peng L; Li J; Gao J DNA Cell Biol; 2019 Jul; 38(7):607-626. PubMed ID: 31210530 [No Abstract] [Full Text] [Related]
7. Comparative Analyses of Anatomical Structure, Phytohormone Levels, and Gene Expression Profiles Reveal Potential Dwarfing Mechanisms in Shengyin Bamboo ( Wang T; Liu L; Wang X; Liang L; Yue J; Li L Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29875341 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis). Huang B; Huang Z; Ma R; Ramakrishnan M; Chen J; Zhang Z; Yrjälä K BMC Plant Biol; 2021 Jun; 21(1):296. PubMed ID: 34182934 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and expression characterization of the DoG gene family of moso bamboo (Phyllostachys edulis). Zhijun Z; Peiyao Y; Bing H; Ruifang M; Vinod KK; Ramakrishnan M BMC Genomics; 2022 May; 23(1):357. PubMed ID: 35538420 [TBL] [Abstract][Full Text] [Related]
10. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots. Wei Q; Jiao C; Guo L; Ding Y; Cao J; Feng J; Dong X; Mao L; Sun H; Yu F; Yang G; Shi P; Ren G; Fei Z New Phytol; 2017 Apr; 214(1):81-96. PubMed ID: 27859288 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis. Gao J; Zhang Y; Zhang C; Qi F; Li X; Mu S; Peng Z PLoS One; 2014; 9(6):e98910. PubMed ID: 24915141 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis). Pan F; Wang Y; Liu H; Wu M; Chu W; Chen D; Xiang Y BMC Genomics; 2017 Jun; 18(1):486. PubMed ID: 28655295 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of lateral buds from Phyllostachys edulis rhizome during germination and early shoot stages. Shou Y; Zhu Y; Ding Y BMC Plant Biol; 2020 May; 20(1):229. PubMed ID: 32448144 [TBL] [Abstract][Full Text] [Related]
14. Physiological and transcriptomic analyses of brassinosteroid function in moso bamboo (Phyllostachys edulis) seedlings. Zhang Z; Yang X; Cheng L; Guo Z; Wang H; Wu W; Shin K; Zhu J; Zheng X; Bian J; Li Y; Gu L; Zhu Q; Wang ZY; Wang W Planta; 2020 Jul; 252(2):27. PubMed ID: 32712728 [TBL] [Abstract][Full Text] [Related]
16. Histological, metabolomic and transcriptomic analyses reveal mechanisms of cold acclimation of the Moso bamboo (Phyllostachys edulis) leaf. Wang H; Guo L; Zha R; Gao Z; Yu F; Wei Q Tree Physiol; 2022 Nov; 42(11):2336-2352. PubMed ID: 35723499 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. Lan Y; Wu L; Wu M; Liu H; Gao Y; Zhang K; Xiang Y Physiol Plant; 2021 May; 172(1):91-105. PubMed ID: 33280114 [TBL] [Abstract][Full Text] [Related]
18. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). Ge W; Zhang Y; Cheng Z; Hou D; Li X; Gao J Plant Biotechnol J; 2017 Jan; 15(1):82-96. PubMed ID: 27337661 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). Liu Y; Wu C; Hu X; Gao H; Wang Y; Luo H; Cai S; Li G; Zheng Y; Lin C; Zhu Q Tree Physiol; 2020 Apr; 40(4):538-556. PubMed ID: 31860727 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification and expression analysis of brassinosteroid action-related genes during the shoot growth of moso bamboo. Wang S; Sun H; Xu X; Yang K; Zhao H; Li Y; Li X; Gao Z Mol Biol Rep; 2019 Apr; 46(2):1909-1930. PubMed ID: 30721422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]