BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38752799)

  • 1. Gene Transfection Efficiency Improvement with Lipid Conjugated Cationic Carbon Dots.
    Chen J; Li F; Zhao B; Gu J; Brejcha NM; Bartoli M; Zhang W; Zhou Y; Fu S; Domena JB; Zafar A; Zhang F; Tagliaferro A; Verde F; Zhang F; Zhang Y; Leblanc RM
    ACS Appl Mater Interfaces; 2024 May; 16(21):27087-27101. PubMed ID: 38752799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly emissive conjugated polyelectrolyte vector for gene delivery and transfection.
    Feng X; Lv F; Liu L; Yang Q; Wang S; Bazan GC
    Adv Mater; 2012 Oct; 24(40):5428-32. PubMed ID: 22887832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: Optimal substitution is critical for effective delivery.
    Thapa B; Plianwong S; Remant Bahadur KC; Rutherford B; Uludağ H
    Acta Biomater; 2016 Mar; 33():213-24. PubMed ID: 26802444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid.
    Kim HK; Davaa E; Myung CS; Park JS
    Int J Pharm; 2010 Jun; 392(1-2):141-7. PubMed ID: 20347025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoplexes versus nanoparticles: pDNA/siRNA delivery.
    Khurana B; Goyal AK; Budhiraja A; Aora D; Vyas SP
    Drug Deliv; 2013 Feb; 20(2):57-64. PubMed ID: 23537464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy.
    Muñoz-Úbeda M; Misra SK; Barrán-Berdón AL; Datta S; Aicart-Ramos C; Castro-Hartmann P; Kondaiah P; Junquera E; Bhattacharya S; Aicart E
    Biomacromolecules; 2012 Dec; 13(12):3926-37. PubMed ID: 23130552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of new pH-sensitive amphiphilic cationic lipids for siRNA delivery.
    Malamas AS; Gujrati M; Kummitha CM; Xu R; Lu ZR
    J Control Release; 2013 Nov; 171(3):296-307. PubMed ID: 23796431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuboplex-Mediated Nonviral Delivery of Functional siRNA to Chinese Hamster Ovary (CHO) Cells.
    Sarkar S; Tran N; Soni SK; Nasa Z; Drummond CJ; Conn CE
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2336-2345. PubMed ID: 33410653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic, amphiphilic copolymer micelles as nucleic acid carriers for enhanced transfection in rat spinal cord.
    Gwak SJ; Nice J; Zhang J; Green B; Macks C; Bae S; Webb K; Lee JS
    Acta Biomater; 2016 Apr; 35():98-108. PubMed ID: 26873365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible Nanovector of siRNA Consisting of Arginine-Based Cationic Lipid for Gene Knockdown in Cancer Cells.
    Sánchez-Arribas N; Martínez-Negro M; Villar EM; Pérez L; Aicart E; Taboada P; Guerrero-Martínez A; Junquera E
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34536-34547. PubMed ID: 32657573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives.
    Liang X; Ren X; Liu Z; Liu Y; Wang J; Wang J; Zhang LM; Deng DY; Quan D; Yang L
    Int J Nanomedicine; 2014; 9():419-35. PubMed ID: 24520193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector.
    Uğurlu Ö; Barlas FB; Evran S; Timur S
    Plasmid; 2020 Jul; 110():102513. PubMed ID: 32502501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers.
    Pierrat P; Wang R; Kereselidze D; Lux M; Didier P; Kichler A; Pons F; Lebeau L
    Biomaterials; 2015 May; 51():290-302. PubMed ID: 25771019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Covalent Associates of siRNAs and AuNPs Enveloped with Lipid Layer and Doped with Amphiphilic Peptide for Efficient siRNA Delivery.
    Poletaeva J; Dovydenko I; Epanchintseva A; Korchagina K; Pyshnyi D; Apartsin E; Ryabchikova E; Pyshnaya I
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30029512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient targeted pDNA/siRNA delivery with folate-low-molecular-weight polyethyleneimine-modified pullulan as non-viral carrier.
    Wang J; Dou B; Bao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():98-109. PubMed ID: 24268238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations.
    Wang X; Yu B; Ren W; Mo X; Zhou C; He H; Jia H; Wang L; Jacob ST; Lee RJ; Ghoshal K; Lee LJ
    J Control Release; 2013 Dec; 172(3):690-8. PubMed ID: 24121065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins.
    McNaughton BR; Cronican JJ; Thompson DB; Liu DR
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6111-6. PubMed ID: 19307578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake.
    Zhou J; Deng W; Wang Y; Cao X; Chen J; Wang Q; Xu W; Du P; Yu Q; Chen J; Spector M; Yu J; Xu X
    Acta Biomater; 2016 Sep; 42():209-219. PubMed ID: 27321673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery.
    Zhang Y; Li H; Sun J; Gao J; Liu W; Li B; Guo Y; Chen J
    Int J Pharm; 2010 May; 390(2):198-207. PubMed ID: 20116418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.