These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 38752987)

  • 1. Misstatements, misperceptions, and mistakes in controlling for covariates in observational research.
    Yu X; Zoh RS; Fluharty DA; Mestre LM; Valdez D; Tekwe CD; Vorland CJ; Jamshidi-Naeini Y; Chiou SH; Lartey ST; Allison DB
    Elife; 2024 May; 13():. PubMed ID: 38752987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When does measurement error in covariates impact causal effect estimates? Analytic derivations of different scenarios and an empirical illustration.
    Sengewald MA; Steiner PM; Pohl S
    Br J Math Stat Psychol; 2019 May; 72(2):244-270. PubMed ID: 30345554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closer look at confounding.
    Sonis J
    Fam Med; 1998 Sep; 30(8):584-8. PubMed ID: 9773290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Top ten errors of statistical analysis in observational studies for cancer research.
    Carmona-Bayonas A; Jimenez-Fonseca P; Fernández-Somoano A; Álvarez-Manceñido F; Castañón E; Custodio A; de la Peña FA; Payo RM; Valiente LP
    Clin Transl Oncol; 2018 Aug; 20(8):954-965. PubMed ID: 29218627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using audit information to adjust parameter estimates for data errors in clinical trials.
    Shepherd BE; Shaw PA; Dodd LE
    Clin Trials; 2012 Dec; 9(6):721-9. PubMed ID: 22848072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propensity Score-Based Estimators With Multiple Error-Prone Covariates.
    Hong H; Aaby DA; Siddique J; Stuart EA
    Am J Epidemiol; 2019 Jan; 188(1):222-230. PubMed ID: 30358801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
    Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y
    Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Causal Inference in Medicine Part II. Directed acyclic graphs--a useful method for confounder selection, categorization of potential biases, and hypothesis specification].
    Suzuki E; Komatsu H; Yorifuji T; Yamamoto E; Doi H; Tsuda T
    Nihon Eiseigaku Zasshi; 2009 Sep; 64(4):796-805. PubMed ID: 19797848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation study of confounding in generalized linear models for air pollution epidemiology.
    Chen C; Chock DP; Winkler SL
    Environ Health Perspect; 1999 Mar; 107(3):217-22. PubMed ID: 10064552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power, selection bias and predictive performance of the Population Pharmacokinetic Covariate Model.
    Ribbing J; Jonsson EN
    J Pharmacokinet Pharmacodyn; 2004 Apr; 31(2):109-34. PubMed ID: 15379381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating effects of nursing intervention via propensity score analysis.
    Qin R; Titler MG; Shever LL; Kim T
    Nurs Res; 2008; 57(6):444-52. PubMed ID: 19018219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics.
    Ananth CV; Schisterman EF
    Am J Obstet Gynecol; 2017 Aug; 217(2):167-175. PubMed ID: 28427805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causal inference with observational data: the need for triangulation of evidence.
    Hammerton G; Munafò MR
    Psychol Med; 2021 Mar; 51(4):563-578. PubMed ID: 33682654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-Basic theory and simple methods of adjustment.
    Keogh RH; Shaw PA; Gustafson P; Carroll RJ; Deffner V; Dodd KW; Küchenhoff H; Tooze JA; Wallace MP; Kipnis V; Freedman LS
    Stat Med; 2020 Jul; 39(16):2197-2231. PubMed ID: 32246539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reflection on modern methods: selection bias-a review of recent developments.
    Infante-Rivard C; Cusson A
    Int J Epidemiol; 2018 Oct; 47(5):1714-1722. PubMed ID: 29982600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensation and Amplification of Attenuation Bias in Causal Effect Estimates.
    Sengewald MA; Pohl S
    Psychometrika; 2019 Jun; 84(2):589-610. PubMed ID: 30915587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of confounder selection.
    VanderWeele TJ
    Eur J Epidemiol; 2019 Mar; 34(3):211-219. PubMed ID: 30840181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. COVID-19 and the epistemology of epidemiological models at the dawn of AI.
    Ellison GTH
    Ann Hum Biol; 2020 Sep; 47(6):506-513. PubMed ID: 33228409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.