BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38753069)

  • 1. The Rapid Evolution of De Novo Proteins in Structure and Complex.
    Chen J; Li Q; Xia S; Arsala D; Sosa D; Wang D; Long M
    Genome Biol Evol; 2024 Jun; 16(6):. PubMed ID: 38753069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid evolution of protein diversity by de novo origination in Oryza.
    Zhang L; Ren Y; Yang T; Li G; Chen J; Gschwend AR; Yu Y; Hou G; Zi J; Zhou R; Wen B; Zhang J; Chougule K; Wang M; Copetti D; Peng Z; Zhang C; Zhang Y; Ouyang Y; Wing RA; Liu S; Long M
    Nat Ecol Evol; 2019 Apr; 3(4):679-690. PubMed ID: 30858588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid diversification of five Oryza AA genomes associated with rice adaptation.
    Zhang QJ; Zhu T; Xia EH; Shi C; Liu YL; Zhang Y; Liu Y; Jiang WK; Zhao YJ; Mao SY; Zhang LP; Huang H; Jiao JY; Xu PZ; Yao QY; Zeng FC; Yang LL; Gao J; Tao DY; Wang YJ; Bennetzen JL; Gao LZ
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):E4954-62. PubMed ID: 25368197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
    Li X; Duan X; Jiang H; Sun Y; Tang Y; Yuan Z; Guo J; Liang W; Chen L; Yin J; Ma H; Wang J; Zhang D
    Plant Physiol; 2006 Aug; 141(4):1167-84. PubMed ID: 16896230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of microRNA genes in Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model.
    Zhang Y; Jiang WK; Gao LZ
    PLoS One; 2011; 6(12):e28073. PubMed ID: 22194805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs.
    Ricachenevsky FK; Sperotto RA; Menguer PK; Sperb ER; Lopes KL; Fett JP
    BMC Plant Biol; 2011 Jan; 11():20. PubMed ID: 21266036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes.
    Jia L; Clegg MT; Jiang T
    Plant Physiol; 2004 Feb; 134(2):575-85. PubMed ID: 14966247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin and structural evolution of
    Peng J; Zhao L
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice.
    Fan C; Zhang Y; Yu Y; Rounsley S; Long M; Wing RA
    Mol Plant; 2008 Sep; 1(5):839-50. PubMed ID: 19825586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus.
    Schauser L; Wieloch W; Stougaard J
    J Mol Evol; 2005 Feb; 60(2):229-37. PubMed ID: 15785851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins and structural properties of novel and de novo protein domains during insect evolution.
    Klasberg S; Bitard-Feildel T; Callebaut I; Bornberg-Bauer E
    FEBS J; 2018 Jul; 285(14):2605-2625. PubMed ID: 29802682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel evolutionary model for constructing gene coexpression networks with comprehensive features.
    Gu Y; Zu J; Li Y
    BMC Bioinformatics; 2019 Sep; 20(1):460. PubMed ID: 31492104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From De Novo to "De Nono": The Majority of Novel Protein-Coding Genes Identified with Phylostratigraphy Are Old Genes or Recent Duplicates.
    Casola C
    Genome Biol Evol; 2018 Nov; 10(11):2906-2918. PubMed ID: 30346517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of orphan domains in Drosophila using "hydrophobic cluster analysis".
    Bitard-Feildel T; Heberlein M; Bornberg-Bauer E; Callebaut I
    Biochimie; 2015 Dec; 119():244-53. PubMed ID: 25736992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication.
    Defoort J; Van de Peer Y; Carretero-Paulet L
    Genome Biol Evol; 2019 Aug; 11(8):2292-2305. PubMed ID: 31364708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple
    Prabh N; Rödelsperger C
    Genome Res; 2022 Jul; 32(7):1315-1327. PubMed ID: 35618417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes.
    Zhou P; Silverstein KA; Ramaraj T; Guhlin J; Denny R; Liu J; Farmer AD; Steele KP; Stupar RM; Miller JR; Tiffin P; Mudge J; Young ND
    BMC Genomics; 2017 Mar; 18(1):261. PubMed ID: 28347275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foldability of a Natural De Novo Evolved Protein.
    Bungard D; Copple JS; Yan J; Chhun JJ; Kumirov VK; Foy SG; Masel J; Wysocki VH; Cordes MHJ
    Structure; 2017 Nov; 25(11):1687-1696.e4. PubMed ID: 29033289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random, de novo, and conserved proteins: How structure and disorder predictors perform differently.
    Middendorf L; Eicholt LA
    Proteins; 2024 Jun; 92(6):757-767. PubMed ID: 38226524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.