These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38753070)
1. Inertial active harmonic particle with memory induced spreading by viscoelastic suspension. Adersh F; Muhsin M; Sahoo M Eur Phys J E Soft Matter; 2024 May; 47(5):33. PubMed ID: 38753070 [TBL] [Abstract][Full Text] [Related]
2. Inertial active Ornstein-Uhlenbeck particle in the presence of a magnetic field. Muhsin M; Sahoo M Phys Rev E; 2022 Jul; 106(1-1):014605. PubMed ID: 35974582 [TBL] [Abstract][Full Text] [Related]
3. Active Brownian motion with memory delay induced by a viscoelastic medium. Sprenger AR; Bair C; Löwen H Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653 [TBL] [Abstract][Full Text] [Related]
4. Orbital magnetism of an active particle in viscoelastic suspension. Muhsin M; Sahoo M; Saha A Phys Rev E; 2021 Sep; 104(3-1):034613. PubMed ID: 34654210 [TBL] [Abstract][Full Text] [Related]
5. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Indei T; Schieber JD; Córdoba A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480 [TBL] [Abstract][Full Text] [Related]
6. Inertial active ratchet: Simulation versus theory. Muhsin M; Sahoo M Phys Rev E; 2023 May; 107(5-1):054601. PubMed ID: 37329079 [TBL] [Abstract][Full Text] [Related]
7. The mesoscopic collective motion of self-propelling active particle suspension confined in two-dimensional micro-channel. Cai SC; Shen YX; Io CW J Phys Condens Matter; 2020 Feb; 32(9):095101. PubMed ID: 31722320 [TBL] [Abstract][Full Text] [Related]
8. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel. Kwon JY; Kim T; Kim J; Cho Y Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390 [TBL] [Abstract][Full Text] [Related]
9. Inertial particle under active fluctuations: Diffusion and work distributions. Goswami K Phys Rev E; 2022 Apr; 105(4-1):044123. PubMed ID: 35590542 [TBL] [Abstract][Full Text] [Related]
10. A lower bound to the survival probability and an approximate first passage time distribution for Markovian and non-Markovian dynamics in phase space. Chakrabarti R; Sebastian KL J Chem Phys; 2009 Dec; 131(22):224504. PubMed ID: 20001054 [TBL] [Abstract][Full Text] [Related]
11. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. Nguyen GHP; Wittmann R; Löwen H J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179 [TBL] [Abstract][Full Text] [Related]
12. A quantitative analysis of memory effects in the viscously coupled dynamics of optically trapped Brownian particles. Paul S; Kumar R; Banerjee A Soft Matter; 2019 Nov; 15(44):8976-8981. PubMed ID: 31681925 [TBL] [Abstract][Full Text] [Related]
13. Memory effects for a trapped Brownian particle in viscoelastic shear flows. Mankin R; Laas K; Lumi N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042142. PubMed ID: 24229150 [TBL] [Abstract][Full Text] [Related]
14. Inertial effects on trapped active matter. Gutierrez-Martinez LL; Sandoval M J Chem Phys; 2020 Jul; 153(4):044906. PubMed ID: 32752692 [TBL] [Abstract][Full Text] [Related]
15. Estimating the viscoelastic moduli of complex fluids from observation of Brownian motion of a particle confined to a harmonic trap. Felderhof BU J Chem Phys; 2011 May; 134(20):204910. PubMed ID: 21639480 [TBL] [Abstract][Full Text] [Related]
17. Steady state of an active Brownian particle in a two-dimensional harmonic trap. Malakar K; Das A; Kundu A; Kumar KV; Dhar A Phys Rev E; 2020 Feb; 101(2-1):022610. PubMed ID: 32168649 [TBL] [Abstract][Full Text] [Related]
18. Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section. Kim U; Kwon JY; Kim T; Cho Y Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208276 [TBL] [Abstract][Full Text] [Related]
19. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation. Han HT; Joo S; Sakaue T; Jeon JH J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046 [TBL] [Abstract][Full Text] [Related]
20. Recovering the activity parameters of an active fluid confined in a sphere. Villalobos C; Cordero ML; Clément E; Soto R Phys Rev E; 2024 Jul; 110(1-1):014610. PubMed ID: 39160977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]