These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38753143)

  • 1. Enhancing the Efficiency of Conventional Surface Immunoassays Within Standard Labware Using Microscale Flows.
    Pereiro I; Fomitcheva-Khartchenko A; Kaigala GV
    Methods Mol Biol; 2024; 2804():103-115. PubMed ID: 38753143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advection-Enhanced Kinetics in Microtiter Plates for Improved Surface Assay Quantitation and Multiplexing Capabilities.
    Pereiro I; Fomitcheva Khartchenko A; Lovchik RD; Kaigala GV
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20935-20942. PubMed ID: 34296491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple add-on devices to enhance the efficacy of conventional surface immunoassays implemented on standard labware.
    Pereiro I; Kartchenko AF; Lovchik RD; Kaigala GV
    Analyst; 2022 May; 147(10):2040-2047. PubMed ID: 35297447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniaturized immunoassays: moving beyond the microplate.
    Verch T; Bakhtiar R
    Bioanalysis; 2012 Jan; 4(2):177-88. PubMed ID: 22250800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDMS microfluidic capillary systems for patterning proteins on surfaces and performing miniaturized immunoassays.
    Pla-Roca M; Juncker D
    Methods Mol Biol; 2011; 671():177-94. PubMed ID: 20967630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays.
    Kim SH; Shim JW; Yang SM
    Angew Chem Int Ed Engl; 2011 Feb; 50(5):1171-4. PubMed ID: 21268220
    [No Abstract]   [Full Text] [Related]  

  • 12. Development and validation of a microfluidic immunoassay capable of multiplexing parallel samples in microliter volumes.
    Ghodbane M; Stucky EC; Maguire TJ; Schloss RS; Shreiber DI; Zahn JD; Yarmush ML
    Lab Chip; 2015 Aug; 15(15):3211-21. PubMed ID: 26130452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Materials for Microfluidic Immunoassays: A Review.
    Mou L; Jiang X
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28322517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of hydrodynamically confined microfluidics: controlling flow envelope and pressure.
    Christ KV; Turner KT
    Lab Chip; 2011 Apr; 11(8):1491-501. PubMed ID: 21359386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic chips for immunoassays.
    Han KN; Li CA; Seong GH
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():119-41. PubMed ID: 23495732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic immunosensor systems.
    Bange A; Halsall HB; Heineman WR
    Biosens Bioelectron; 2005 Jun; 20(12):2488-503. PubMed ID: 15854821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and fabrication of low-cost 1536-chamber microfluidic microarrays for mood-disorders-related serological studies.
    Zhao X; Dong T
    Sensors (Basel); 2013 Oct; 13(11):14570-82. PubMed ID: 24169541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.