These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38753145)

  • 1. Microfluidic Cartridge for Bead-Based Affinity Assays.
    Pinto IF; Chotteau V; Russom A
    Methods Mol Biol; 2024; 2804():127-138. PubMed ID: 38753145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed Microfluidic Cartridge for At-Line Protein Monitoring in Mammalian Cell Culture Processes for Biopharmaceutical Production.
    Pinto IF; Soares RRG; Mäkinen ME; Chotteau V; Russom A
    ACS Sens; 2021 Mar; 6(3):842-851. PubMed ID: 33724791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a microfluidic immunoassay capable of multiplexing parallel samples in microliter volumes.
    Ghodbane M; Stucky EC; Maguire TJ; Schloss RS; Shreiber DI; Zahn JD; Yarmush ML
    Lab Chip; 2015 Aug; 15(15):3211-21. PubMed ID: 26130452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Efficient Fabrication and Sealing of Chips Using a "Chip-Olate" Process.
    Temiz Y; Delamarche E
    Methods Mol Biol; 2017; 1547():25-36. PubMed ID: 28044284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers.
    Hemmig E; Temiz Y; Gökçe O; Lovchik RD; Delamarche E
    Anal Chem; 2020 Jan; 92(1):940-946. PubMed ID: 31860276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for microfluidic single-cell cultivation and live-cell imaging of Chinese hamster ovary suspension cell lines.
    Schmitz J; Yermakov B; Grünberger A
    STAR Protoc; 2024 Jun; 5(2):103106. PubMed ID: 38824641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Area Microfluidic Bioreactor for Production of Recombinant Protein.
    Bourguignon N; Karp P; Attallah C; Chamorro DA; Oggero M; Booth R; Ferrero S; Bhansali S; Pérez MS; Lerner B; Helguera G
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review.
    Buckley K; Ryder AG
    Appl Spectrosc; 2017 Jun; 71(6):1085-1116. PubMed ID: 28534676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing custom chinese hamster ovary-host cell protein assays using acoustic membrane microparticle technology.
    Dickerson M; Leong K; Sheldon K; Madison L
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21339717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Chinese hamster ovary host cell protein ELISA using Ella
    Van Manen-Brush K; Zeitler J; White JR; Younge P; Willis S; Jones M
    Biotechniques; 2020 Sep; 69(3):186-192. PubMed ID: 32615786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.
    Rameez S; Mostafa SS; Miller C; Shukla AA
    Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for Microfluidic Immunoassays: A Review.
    Mou L; Jiang X
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28322517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LC-HRMS-based targeted metabolomics for high-throughput and quantitative analysis of 21 growth inhibition-related metabolites in Chinese hamster ovary cell fed-batch cultures.
    Lai Z; Choudhury FK; Tang D; Liang X; Dean B; Misaghi S; Sangaraju D
    Biomed Chromatogr; 2022 May; 36(5):e5348. PubMed ID: 35083760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-culture process optimization via model-based predictions of metabolism and protein glycosylation.
    Reddy JV; Raudenbush K; Papoutsakis ET; Ierapetritou M
    Biotechnol Adv; 2023 Oct; 67():108179. PubMed ID: 37257729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rapid, simple and sensitive microfluidic chip electrophoresis mass spectrometry method for monitoring amino acids in cell culture media.
    Ribeiro da Silva M; Zaborowska I; Carillo S; Bones J
    J Chromatogr A; 2021 Aug; 1651():462336. PubMed ID: 34153732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.