These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38753152)

  • 1. Selective Targeting of Tumor Cells in a Microfluidic Tumor Model with Multiple Cell Types.
    van de Crommert B; Palacio-Castañeda V; Verdurmen WPR
    Methods Mol Biol; 2024; 2804():237-251. PubMed ID: 38753152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a novel microfluidic co-culture system for simultaneous analysis of multiple indicators of gefitinib sensitivity in colorectal cancer cells.
    Li X; Li W; Wang J; Wang Q; Liang M; Chen S; Ba W; Fang J
    Mikrochim Acta; 2024 Apr; 191(5):279. PubMed ID: 38647729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.
    Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ
    PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Applications of Microfluidic Devices: A Review.
    Niculescu AG; Chircov C; Bîrcă AC; Grumezescu AM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput analysis of cell-cell crosstalk in ad hoc designed microfluidic chips for oncoimmunology applications.
    Mencattini A; De Ninno A; Mancini J; Businaro L; Martinelli E; Schiavoni G; Mattei F
    Methods Enzymol; 2020; 632():479-502. PubMed ID: 32000911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip.
    Han B; Qu C; Park K; Konieczny SF; Korc M
    Cancer Lett; 2016 Sep; 380(1):319-29. PubMed ID: 26688098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic 3D Cytotoxic Assay.
    Choi H; Cheong S; Jin A; Park D; Jeon NL
    Methods Mol Biol; 2024; 2804():209-221. PubMed ID: 38753150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment.
    Niu Y; Bai J; Kamm RD; Wang Y; Wang C
    Mol Pharm; 2014 Jul; 11(7):2022-9. PubMed ID: 24533867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Based Optical Microscopes on Chip.
    Paiè P; Martínez Vázquez R; Osellame R; Bragheri F; Bassi A
    Cytometry A; 2018 Oct; 93(10):987-996. PubMed ID: 30211977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing Point-of-Care Applications with Droplet Microfluidics: From Single-Cell to Multicellular Analysis.
    Sharkey C; White R; Finocchiaro M; Thomas J; Estevam J; Konry T
    Annu Rev Biomed Eng; 2024 Jul; 26(1):119-139. PubMed ID: 38316063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture.
    Aydin HB; Moon HR; Han B; Ozcelikkale A; Acar A
    Methods Mol Biol; 2024; 2764():265-278. PubMed ID: 38393600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions.
    Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P
    Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumour-vessel-on-a-chip models for drug delivery.
    Caballero D; Blackburn SM; de Pablo M; Samitier J; Albertazzi L
    Lab Chip; 2017 Nov; 17(22):3760-3771. PubMed ID: 28861562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures.
    Dornhof J; Kieninger J; Muralidharan H; Maurer J; Urban GA; Weltin A
    Lab Chip; 2022 Jan; 22(2):225-239. PubMed ID: 34851349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Heterogeneous Drug Gradients Across Cancer Populations on a Microfluidic Evolution Accelerator for Real-Time Observation.
    Lin KC; Torga G; Sun Y; Pienta KJ; Sturm JC; Austin RH
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.